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Abstract

Hermite subdivision schemes have been studied by Merrien, Dyn and Levin
and they appear to be very different from subdivision schemes analyzed be-
fore since the rules depend on the subdivision level. As suggested by Dyn and
Levin, it is possible to transform the initial scheme into a uniform stationary
vector subdivision scheme which can be handled more easily. With this trans-
formation, the study of convergence of Hermite subdivision schemes is reduced
to that of vector stationary subdivision schemes. We propose a first criterion
for C0 convergence for a large class of vector subdivision schemes. This gives a
criterion for C1 convergence of Hermite subdivision schemes. It can be noticed
that these schemes do not have to be interpolatory. We conclude by investi-
gating spectral properties of Hermite schemes and other necessary/sufficient
conditions of convergence.

Math Subject Classification: 65D17, 65D10
Keywords: Subdivision, convergence, Hermite interpolation

1 Introduction

Subdivision methods constitute a large class of recursive schemes for computing curves
in R

r, see Cavaretta, Dahmen and Michelli [1]. Vector subdivision schemes, matrix
refinement equations and their links with the wavelets in multidimension have been
studied by many authors, for example Cohen et al. [2, 3], Daubechies and Lagarias [4],
Heil and Colella [13], Jia et al. [14]. They usually give the regularity of the solution
of a wavelet equation in distribution or Sobolev spaces. Moreover deep studies of
Hermite subdivision schemes have been done by Dyn and Levin [8, 9], Zhou [18], Han
[10, 11] and Han et al. [12].

The main purpose of this paper is to investigate the C0-convergence of a refine-
ment scheme of dimension d with a matrix mask. We are especially interested in
solutions which converge to continuous vector functions Φ = (φ1, ..., φd)

T such that
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φk = φ1, k = 1, . . . , d. First we propose a criterion for C0 convergence for a large
class of vector subdivision schemes and then we apply this criterion to Hermite sub-
division schemes. Dyn and Levin [8, 9] have given a condition for C1-convergence of
interpolating Hermite schemes. With our approach, we are able to generalize their
result to arbitrary non interpolatory schemes and our criterion is much more explicit.

Our paper can be detailed as follows. In Section 2, we introduce the vector
subdivision scheme gn+1(i) =

∑

j∈Z
Bi−2jgn(j) where gn(i) ∈ R

d and Bi is a mask of

d × d matrices. Section 3 is devoted to the definition of C0-convergence and to the
first properties of the vector schemes. In Section 4, we give sufficient conditions to
obtain the C0-convergence. The two conditions are the affinity of the scheme which
is a usual condition and another one based on the n-th norming factor κn.

Then, in Section 5 we define the Hermite subdivision schemes H in order to
get a function and its first derivative. Since we want to get a solution of the type
f = (φ, φ′)T , the refinement equation is Dn+1fn+1(i) =

∑

j∈Z
Ai−2jD

nfn(j) where

fn(i) ∈ R
2, D =

(

1 0
0 1/2

)

and Ai a mask of 2 × 2 matrices. The convergence we

are interested in is C1-convergence. In Section 6, the Hermite scheme is transformed
into an associated vector scheme with d = 2.

In Section 7, for a given Hermite scheme we introduce the basic matrix function
Φ, a 2 × 2 matrix. If the scheme is C1-convergent, then DΦ(x/2) =

∑

j∈Z
Φ(x −

j)Aj. Section 8 gives some spectral properties of C1-convergent schemes so that in
Section 9 we can give necessary conditions for convergence. This is completed by a
theorem which uses the results of Section 4 to give sufficient conditions to obtain the
convergence. A few examples are proposed in Section 10.

2 Vector subdivision schemes

A vector subdivision scheme S of dimension d is defined by an initial vector function
g0 : Z → R

d and by a set of real d × d matrix coefficients {Bi : i ∈ Z}, with a
finite number of non-zero Bi’s, generating a sequence of refinements gn : Z → R

d,
n = 1, 2, 3, . . ., recursively by

gn+1(i) =
∑

j∈Z

Bi−2jgn(j), i ∈ Z. (1)

The control vector gn(i) is attached to the dyadic point i/2n.
The set of matrices {Bi : i ∈ Z} is called the mask of the subdivision scheme S.

The support of S is the smallest interval [τ, τ ′] containing {i : Bi 6= 0}. The width of
S is the length τ ′ − τ of the support.

We now introduce a supermatrix, a matrix whose entries are d × d matrices:
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Sij = Bi−2j . The matrix is doubly infinite.

S =























...
...
...

...
...

...
...

...
...
...
...

· · · B2 B0 B−2 B−4 B−6 · · ·
· · · B3 B1 B−1 B−3 B−5 · · ·
· · · B4 B2 B0 B−2 B−4 · · ·
· · · B5 B3 B1 B−1 B−3 · · ·
· · · B6 B4 B2 B0 B−2 · · ·
...
...
...

...
...

...
...

...
...
...
...























(2)

On each row, there is only a finite number of nonzero matrices. The supermatrix S is
the matrix representation of the refinement operator, if gn, n = 0, 1, 2, ... is a sequence
of refinements, if Vn is the column vector (gn(i))i∈Z, then Vn+1 = SVn.

As indicated by Cohen, Dyn and Levin [2], in vector subdivision schemes theory
it is convenient to consider d× d matrix valued functions, generated by applying the
scheme to sets of matrix control points.

Definition 1 The basic matrix refinements of a vector subdivision scheme is the
recursive sequence Ψn (Ψn : Z → R

d×d) defined by:

Ψn+1(i) =
∑

j∈Z

Bi−2jΨn(j), i ∈ Z, n ∈ N, (3)

with Ψ0(i) = δ0iI where I is the identity matrix of order d.

Remark 1 Ψ1(i) = Bi, i ∈ Z.

Proposition 1 If S is the supermatrix (Bi−2j)i∈Z,j∈Z, then the (i, j)-entry of the
supermatrix Sn is Ψn(i− 2nj).

Proof: We proceed by induction on n. Firstly, Sij = Bi−2j = Ψ1(i − 21j). Then
according to the relation Sn+1 = S × Sn, the (i, j)-entry of Sn+1 is
∑

k Bi−2kΨn(k − 2nj) =
∑

`Bi−2n+1j−2`Ψn(`). From Equation (3), this entry is equal
to Ψn+1(i− 2n+1j). 2

Corollary 2 For all n ∈ N and all i ∈ Z and for all g0 : Z → R
d:

gn(i) =
∑

j∈Z

Ψn(i− 2nj)g0(j).

Corollary 3 For all n, n′ ∈ N and for all i ∈ Z,

Ψn+n′(i) =
∑

j∈Z

Ψn(i− 2nj)Ψn′(j). (4)
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Proposition 4 If [τ, τ ′] is the support of S, then for every i /∈ [(2n − 1)τ, (2n − 1)τ ′],
Ψn(i) = 0.

Proof: Obviously the lemma is true for n = 0. We proceed by induction and by
contradiction. We assume that there exist n ∈ N and i ∈ Z satisfying the properties
1) (∀j /∈ [(2n − 1)τ, (2n − 1)τ ′]), Ψn(j) = 0,
2) (∃i /∈ [(2n+1 − 1)τ, (2n+1 − 1)τ ′]), Ψn+1(i) 6= 0.
According to Equation (3) there exists j ∈ Z such that Bi−2j 6= 0 and Ψn(j) 6= 0. So
that τ ≤ i− 2j ≤ τ ′ and (2n − 1)τ ≤ j ≤ (2n − 1)τ ′. It follows that
(2n+ 1 − 1)τ ≤ i ≤ (2n+1 − 1)τ ′. This is a contradiction with property 2). 2

3 C0 vector subdivision schemes

Definition 2 We say that a vector subdivision scheme of dimension d is C0, if for
every sequence of refinements gn : Z → R

d, the sequence of piecewise linear vector
valued functions generated by the vectors of polygonal lines {(i/2n, gn(i)) : i ∈ Z}
converges uniformly on any finite interval to a vector function g : R → R

d. g is called
the limit of the sequence of refinements gn.

Definition 3 A C0 vector subdivision scheme is nondegenerate if there is at least
one sequence of refinements gn whose limit is 6≡ 0.

Lemma 5 By the definition of nondegeneracy, there exists a sequence of refinements
gn such that the sequence of vectors gn(0) converges to a nonzero vector as n→ ∞.

Proof: Thanks to the definition of C0 convergence, we have come to know that
there exists a sequence of refinements gn with a limit g 6≡ 0. There exists an interval
[a, b], a < b and a positive number ε such that (∀x ∈ [a, b]) ||g(x)|| > ε. There exists
an integer N such that ||gn(i) − g(i/2n)|| < ε/2 for every i ∈ [a2n, b2n] and for every
n > N . We choose an integer m > N and an integer i′ ∈ Z such that i′/2m ∈ [a, b].
We choose as initial data g̃0(i) = gm(i′ + i). If g̃n is the sequence of refinements
generated by g̃0, a simple verification shows that g̃n(i) = gm+n(i+ 2ni′). As n → ∞,
the sequence g̃n(0) converge to g(i′/2m), a vector whose norm is at least equal to ε/2.
2

Definition 4 The truncation of the supermatrix S is the matrix

[S] = (Bi−2j)−τ ′≤i≤−τ,−τ ′≤j≤−τ

where τ = min{i : Bi 6= 0}, τ ′ = max{i : Bi 6= 0}. The truncation of a column vector
V = (v(i))i∈Z, is [V ] = (v(i))−τ ′≤i≤−τ .

Proposition 6 If V is a column vector, then [SV ] = [S][V ].
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Proof: If V = (v(i))i∈Z is a column vector with v(i) ∈ R
d we define W = SV i.e

w(i) =
∑

j∈Z

Sijv(j), i ∈ Z.

Let i be in [−τ ′,−τ ]. For j /∈ [−τ ′,−τ ], we have i− 2j /∈ [τ, τ ′] and Sij = Bi−2j = 0.

So that w(i) =
−τ
∑

j=−τ ′

Sijv(j). And we conclude that [W ] = [S][V ]. 2

Corollary 7 For any n ∈ N, [Sn] = [S]n.

Let us recall a result on the powers of a matrix. This theorem can be proved using
Jordan normal form.

Theorem 8 (Oldenberger [17]) Let A be a square matrix and let P (λ) be its char-
acteristic polynomial. The sequence An converges if and only if
1) If P (λ) = 0, |λ| < 1 or λ = 1.
2) If P (1) = 0, the dimension of the eigenspace {x : Ax = x} is equal to the multi-
plicity of the root 1 in the equation P (λ) = 0.

Theorem 9 In a nondegenerate C0 vector subdivision scheme of support [τ, τ ′] , 1 is
an eigenvalue of [S] and any other eigenvalue is in the open disk {z : |z| < 1}. Any
eigenvector x = (x(i))i∈[−τ ′,−τ ] of [S] with eigenvalue 1 is such that x(i) = x(−τ).
The dimension of {x : [S]x = x} is equal to the multiplicity of the root 1 of the
characteristic polynomial of [S].

Proof: Starting with g0, let Vn = (gn(i))i∈Z. We recall that Vn+1 = SVn, n ∈ N so
that, according to Lemma 6, [Vn+1] = [S][Vn]. If φn is the sequence of piecewise linear
functions generated by the polygonal lines {(i/2n, gn(i)) : i ∈ Z}, by C0 convergence,
φn converges to a continuous function g. Since φn(i/2n) = gn(i), then limn→∞ gn(i) =
g(0) for every i ∈ Z. We deduce that [Vn] and [Vn+1] converge to v = g(0)(1, 1, · · · , 1)T .
We conclude that v = [S]v and choosing g0 such that g(0) 6= 0, we have proved that
1 is an eigenvalue of [S].

The equality [Vn+1] = [S][Vn], n ∈ N implies that [Vn] = [S]n[V0], n ∈ N. Since the
sequence Vn converges for any V0, the sequence [S]n[V0] converges for any [V0] so that
[S]n converges. From Theorem 8, any eigenvalue of [S] other than 1 is in the open
disk and the dimension of {x : [S]x = x} is equal to the multiplicity of the root 1 of
the characteristic polynomial of [S]. 2

4 Sufficient conditions for C0 convergence

Let us now specify two notations. If gn is a sequence of refinements of a vector
subdivision scheme S of dimension d, then for k = 1, ..., d, g

(k)
n is the k-component of

gn. If Ψn is the n-th basic matrix refinement of S, then for k, ` = 1, ..., d, Ψk`
n is the

k`-entry of Ψn.
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Definition 5 A vector subdivision scheme S is affine if the vector of R
d whose all

components are equal to 1 is a right eigenvector of both matrices
∑

iB2i,
∑

iB2i+1

with the eigenvalue 1.

Remark 2 S is affine iff SV = V where V = (v(i) = e)i∈Z and e = (1, . . . , 1)T ∈ R
d.

This condition will happen if and only if
∑

j∈Z

∑d

`=1 bk`(i−2j) = 1, k = 1, . . . , d, i ∈ Z,
where the matrix representation of the mask of the scheme is {Bi = (bk`(i)), i ∈ Z}.
In that case SnV = V and

∑

j∈Z

∑d

`=1 ψ
k`
n (i − 2nj) = 1, k = 1, . . . , d, n ∈ N where

Ψn is the nth basic matrix refinement of S.
Let us introduce various quantities. If v = (v1, v2, . . . , vd)

T , w = (w1, w2, . . . , wd)
T

are two vectors of R
d, we set

ρ(v, w) = max{|vk − wk′ | : k, k′ = 1, 2, . . . , d},

ω(g, h) = sup{ρ(g(i), g(i′)) : |i− i′| ≤ h}

where g : Z → R
d.

Remark 3 ω is a kind of modulus of continuity. It is obvious that for h ≥ h′,
ω(g, h) ≥ ω(g, h′).

Lemma 10 Let {Bi = (bk`(i)), k, ` = 1, ..., d} be the mask of an affine vector subdi-
vision scheme of dimension d, then for every sequence gn of refinements, for every
i ∈ Z and for any n ∈ N,

ρ(gn+1(2i), gn(i)) ≤
∑

j∈Z

d
∑

`=1

|bk`(−2j)|(1 + |j|)ω(gn, 1).

and there exists C > 0 such that ρ(gn+1(2i), gn(i)) ≤ Cω(gn, 1).

Proof: In an affine vector subdivision scheme, we have
∑

j∈Z

d
∑

`=1

bk`(i − 2j) = 1. It

follows that

g
(k)
n+1(2i) − g(k′)

n (i) =
∑

j∈Z

d
∑

`=1

bk`(−2j)(g(`)
n (j + i) − g(k′)

n (i)),

where g
(k)
n (i) is the k-entry of the vector gn(i) ∈ R

d.

Since |(g
(`)
n (j + i) − g

(k′)
n (i))| ≤ |j|ω(gn, 1) + ω(gn, 0) and ω(gn, 0) ≤ ω(gn, 1), we

get ρ(gn+1(2i), gn(i)) ≤
∑

j∈Z

∑d

`=1 |bk`(−2j)|(1 + |j|)ω(gn, 1). Now since the support
of {B−2j} is finite, the last sum is finite and we obtain the second bound.

2
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Definition 6 The n-th norming factor κn of a subdivision scheme S of width h is

κn = max{
∑

j∈Z

d
∑

`=1

|ψk`
n (i− j2n) − ψk′`

n (i′ − j2n)| : k, k′ = 1, . . . , d, |i− i′| ≤ h}

where ψk`
n is the k`-entry of the matrix function Ψn, Ψn being the sequence of basic

matrix refinements of S.

Lemma 11 Let h be the width of an affine vector subdivision scheme S and let gn be
a sequence of refinements, then for every m and n ∈ N

ω(gm+n, h) ≤ κnω(gm, h)/2.

Proof: Let [τ, τ ′] be the support of S. Define h = τ ′ − τ . Since gm+n = Sngm, we

have gm+n(i) =
∑

j∈Z

Ψn(i− 2nj)gm(j), i ∈ Z so that

g
(k)
m+n(i) =

∑

j∈Z

d
∑

`=1

ψk`
n (i− 2nj)g(`)

m (j), i ∈ Z, k = 1, . . . , d. Since the scheme is affine,

∑

j∈Z

d
∑

`=1

ψk`
n (i− 2nj) = 1, i ∈ Z.

From these two last equalities we deduce that for any c ∈ R,

g
(k)
m+n(i) − c =

∑

j∈Z

d
∑

`=1

ψk`
n (i− 2nj)(g(`)

m (j) − c), i ∈ Z, k = 1, . . . , d. (5)

Let us consider two integers i, i′ ∈ Z with |i − i′| ≤ h. We may assume that
i ≤ i′ and we define the set J = {j : −τ ′(2n − 1) + i ≤ 2nj ≤ −τ(2n − 1) + i′}. By
Proposition 4, Ψn(i) = 0 for i /∈ (2n − 1)[τ, τ ′] so that Ψn(i− 2nj) = Ψn(i′ − 2nj) = 0
for any j /∈ J .

With this remark, using equality (5) for (i, k) and (i′, k′) we get:

g
(k)
m+n(i) − c =

∑

j∈J

d
∑

`=1

ψk`
n (i− 2nj)(g(`)

m (j) − c) and

g
(k′)
m+n(i′) − c =

∑

j∈J

d
∑

`=1

ψk′`
n (i′ − 2nj)(g(`)

m (j) − c).

By a substraction, for any c ∈ R we obtain:

g
(k)
m+n(i)− g

(k′)
m+n(i′) =

∑

j∈J

d
∑

`=1

[ψk`
n (i− 2nj)−ψk′`

n (i′ − 2nj)](g(`)
m (j)− c), from which we

deduce that:

∀c ∈ R, |g
(k)
m+n(i) − g

(k′)
m+n(i′)| ≤ κn max{|g(`)

m (j) − c|, j ∈ J, ` = 1, . . . , d}.

7



Now let [a, b] be the smallest interval covering the set of the components of all
the vectors gm(j), j ∈ J which is a finite set of real numbers. Choose c = (a + b)/2.

We already know that for any j ∈ J and any ` ∈ {1, . . . , d}, |g
(`)
m (j)− c| ≤ (b− a)/2.

Since the diameter of J does not exceed h we deduce
|b− a| ≤ ω(gm, h)) and we get the conclusion. 2

Lemma 12 If one of the norming factors of an affine vector subdivision scheme S
is < 2, then for every sequence of refinements gn

∞
∑

n=0

ω(gn, 1) <∞.

Proof: Let h be the width of S and let m > 0 be an integer such that κm < 2.
From Lemma 11, ω(gn+m, h) ≤ [κm/2]ω(gn, h) for every n ∈ N.
By induction, it follows that ω(gqm+r, h) ≤ [κm/2]

qω(gr, h) for q ∈ N and for r =
0, 1, . . . ,m− 1. Writing the euclidian division, n = mq+ r, this is sufficient to obtain
the convergence of the series

∑∞

n=0 ω(gn, h). Since ω(gn, 1) ≤ ω(gn, h), we get the
conclusion. 2

Theorem 13 If one of the norming factors of an affine vector subdivision scheme S
is < 2, then S is C0. Moreover if ψ is the limit function of a sequence of refinements
gn, then all the components of ψ are the same.

Proof: We assume that [τ, τ ′] is the support of S. We consider a sequence of refine-
ments gn of S and the corresponding sequence of piecewise linear vector functions ψn,
ψn(i/2n) = gn(i), i ∈ Z. If a < b are two integers of Z, let || · ||∞ denote the uniform
norm on C[a, b]. We will show that ψn converge to a function g in the uniform norm.

The values of ψn on [a, b] are uniquely determined by the numbers gn(i), i ∈
[a2n, b2n]. Since

(∀i ∈ Z)gn(i) =
∑

j∈Z

Sn(i, j)g0(j),

it follows from Lemma 4 that the restriction of ψn to [a, b] is uniquely determined by
the values of g0(j), j ∈ [a − τ ′, b + τ ]. So there is no loss of generality by assuming
that g0(j) = 0, j /∈ [a− τ ′, b+ τ ].

Since the maximum of ||ψn+1(x) − ψn(x)|| on [a, b] is attained at a point on the
(n+ 1)th mesh, then

||ψn+1 − ψn||∞ ≤ max{Mn,M
′
n}, (6)

where
{

Mn = max{||gn+1(2i) − gn(i))||∞ : i ∈ Z}
M ′

n = max{||gn+1(2i+ 1) − (gn(i) + gn(i+ 1))/2)||∞ : i ∈ Z}.
(7)
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According to Lemma 10, there exists a number C such that

ρ(gn+1(2i), gn(i)) ≤ Cω(gn, 1). (8)

Since for every pair v, w of vectors of R
d, ||v − w||∞ ≤ ρ(v, w), we get Mn ≤

Cω(gn, 1).
The vector 2gn+1(2i+1)−gn(i)−gn(i+1) is the sum of the four vectors gn+1(2i)−

gn(i), gn+1(2i+ 2)− gn(i+ 1), gn+1(2i+ 1)− gn+1(2i) and gn+1(2i+ 1)− gn+1(2i+ 2).
It follows that M ′

n ≤ 2Mn + 2ω(gn+1, 1).
After using last two inequalities and Lemma 12, we get

∞
∑

n=0

||ψn+1 − ψn||∞ <∞.

From Weierstrass criterion, the sequence ψn converges uniformly to a continuous
function ψ on [a, b]. The interval [a, b] may be arbitrarily large, the scheme S is C0.

The vector function ψ has d components ψ(k), k = 1, ..., d. Let us show that all of
the components of ψ are the same. For any ε > 0, there exists an integer N such that
for every n > N , ω(gn, 1) < ε and (∀i ∈ Z) ||gn(i)− ψ(i/2n)|| < ε. If k, ` are between
1 and d, if n > N , then for every i ∈ Z |ψ(k)(i/2n) − ψ(`)(i/2n)| < 3Cε. This follows
from (8) and the definition of ρ. From this inequality and the fact that ψ(k) and ψ(`)

are continuous, we infer that all the components of ψ are the same. 2

We conclude this section with a kind of converse.

Theorem 14 Let S be a C0 vector subdivision scheme, we denote by ψk` the k`-entry
of the basic matrix function Ψ and we assume that for k, ` = 1, ..., d ψk` = ψ1`. Then
the sequence κn of norming factors of S converges to 0 as n→ ∞.

Proof: Let h be the width of S and let ε > 0. By uniform continuity, there exists
a δ > 0 such that |ψ1`(x) − ψ1`(x′)| < ε for ` = 1, ..., d if |x− x′| < δ. Let Ψn be the
basic matrix refinements of S. Since S is C0, there exists an integer N0 such that
|ψk`

n (i) − ψ1`(i/2n)| < ε for i ∈ Z, k, ` ∈ [1, d] and n > N0. We choose N such that
N ≥ N0 and h/2N < δ.

Let n > N , |i−i′| ≤ h, k, ` ∈ [1, d] and j ∈ Z, then |ψk`
n (i−j2n)−ψk`

n (i′−j2n)| < 3ε.
By Proposition 4, the number of j ∈ Z for which Ψn(i− j2n) 6= 0 does not exceed h.
It follows that the number of j ∈ Z for which |ψk`

n (i− j2n) − ψk`
n (i′ − j2n)| 6= 0 does

not exceed 2h and κn < 6dhε. The sequence κn converges to 0 as n→ ∞. 2

5 Hermite subdivision schemes

Hermite subdivision schemes have been studied by Merrien [16], Dyn and Levin
[8]. These schemes are non-stationary, but they can be transformed into station-
ary schemes. A Hermite subdivision scheme H of order 1 is a recursive scheme for
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computing a function φ : R → R and its first derivative φ′. The initial state of the
scheme is a vector function {f0(i) ∈ R

2 : i ∈ Z}. The first component of f0 is a
control value for φ, the second component is a control value for φ′. The sequence of
refinements {fn : Z → R

2, n > 0} is recursively defined through a family of 2 × 2
matrices {Ai = (ak`(i))k,`=0,1 : i ∈ Z}, a finite number of them being non-zero.

Dn+1fn+1(i) =
∑

j∈Z

Ai−2jD
nfn(j), i ∈ Z, n ∈ N, (9)

where D is the diagonal matrix whose diagonal elements are 1, 1/2.
Another way of writing the previous equation is

f
(0)
n+1(i) =

∑

j∈Z

[a00(i− 2j)f (0)
n (j) + a01(i− 2j)f (1)

n (j)/2n], (10)

f
(1)
n+1(i)/2

n+1 =
∑

j∈Z

[a10(i− 2j)f (0)
n (j) + a11(i− 2j)f (1)

n (j)/2n], (11)

for i ∈ Z, where f
(0)
n (i), f

(1)
n (i) are the two components of the vector fn(i).

The family of matrices {Ai : i ∈ Z} is called the mask of the Hermite subdivision
scheme H. The support of H is the smallest interval [σ, σ ′] containing {i : Ai 6= 0}.

A Hermite subdivision scheme is interpolatory if A0 = D and for all i ∈ Z with
i 6= 0, A2i = 0.

Definition 7 We say that a Hermite subdivision scheme is C1-convergent or more
simply C1, if for every initial vector function f0 : Z → R

2, there is a C1-function
φ : R → R such that for any x ∈ R and for any sequence of integers in for which
limn→∞ in/2

n = x,
lim

n→∞
f (0)

n (in) = φ(x), (12)

lim
n→∞

2n∆f (0)
n (in) = lim

n→∞
f (1)

n (in) = φ′(x) (13)

where ∆f(i) = f(i+ 1) − f(i) for i ∈ Z and f : Z → R.
The function φ is called the limit function associated with the refinements fn.

Remark 4 If in a given interpolatory Hermite subdivision scheme, for every initial
vector function f0 : Z → R

2, there is a C1-function φ : R → R for which

f (k)
n (i) = φ(k)(i/2n), k = 0, 1, i ∈ Z, n ∈ N

where φ(0) = φ, φ(1) = φ′, then the Hermite subdivision scheme is C1.

Proposition 15 Let H be a Hermite subdivision scheme. If for every initial vector
function f0 : Z → R

2, the sequence f
(0)
n (0) converges and there is a continuous func-

tion φ1 : R → R such that for any x ∈ R and for any sequence of integers in for which
limn→∞ in/2

n = x,

lim
n→∞

2n∆f (0)
n (in) = lim

n→∞
f (1)

n (in) = φ1(x), (14)

10



then H is C1.

The proof of the proposition is left to the reader.

6 The associated vector scheme

In this section, we will define the notion of reproduction of constants for a Hermite
subdivision scheme H. When H reproduces constants, we are able to associate to H
a vector subdivision scheme S. And there is a strong relationship between the C1

convergence in H and the C0 convergence in S. Before that let us characterize the
fact that for initial data f0(i) = (1, 0)T , then fn(i) = (1, 0)T , i ∈ Z, n ∈ N.

Definition 8 A Hermite subdivision scheme of mask Ai =

(

a00(i) a01(i)
a10(i) a11(i)

)

repro-

duces constants if
∑

j∈Z

a00(2j) =
∑

j∈Z

a00(2j + 1) = 1, (15)

∑

j∈Z

a10(2j) =
∑

j∈Z

a10(2j + 1) = 0. (16)

Definition 9 A Hermite subdivision scheme is nondegenerate if for any vector y of
R

2 there exists at least one initial data f0 such that limn→∞ fn(0) = y.

Proposition 16 If a Hermite subdivision scheme is C1 and nondegenerate, then con-
stants are reproduced.

Proof: According to Definition 9, we may consider an initial data f0 for which
φ(0) = 1 where φ is the limit function associated with the refinements fn. In the
vector subdivision scheme with initial function g0 = f0 and mask {Ai}, the sequence
of refinements is gn = Dnfn. The limit of the refinements is g(x) = (φ(x), 0)T .
From equality (9), when n tends to ∞, we get that (1, 0)T is an eigenvector with the
eigenvalue 1 for both matrices

∑

j Ai−2j , i = 0, 1 and we obtain both Equations (15)
and (16). 2

Theorem 17 (Dyn and Levin [8]) Let fn = (f
(0)
n , f

(1)
n )T , n = 0, 1, 2, . . . be the

refinements of a Hermite subdivision scheme H of mask Ai =

(

a00(i) a01(i)
a10(i) a11(i)

)

, we

assume that
∑

j a00(2j) =
∑

j a00(2j + 1) = 1 and
∑

j a10(2j) =
∑

j a10(2j + 1) = 0.

11



Then the sequence gn(i) = (f
(1)
n (i), 2n[∆f

(0)
n (i)])T , n = 0, 1, 2, . . . is the sequence of

refinements of a vector subdivision scheme of mask

Bi =

(

b00(i) b01(i)
b10(i) b11(i)

)

= 2













a11(i)
∞

∑

k=1

a10(i− 2k)

∆a01(i) ∆
∞

∑

k=1

a00(i− 2k)













i.e.
gn+1(i) =

∑

j∈Z

Bi−2jgn(j). (17)

Proof: Let [σ, σ′] be the support of H. Firstly, we notice that for i < −σ−1, Bi = 0.
Secondly, for i > σ′, by a similar argument, we have b00(i) = b01(i) = 0. Now for k ≤ 0
we get a00(i+ 1− 2k) = a00(i− 2k) = 0 since i+ 1− 2k > σ′ and i− 2k > σ′ so that
b01(i) = 2

∑

k∈Z
a10(i− 2k) and similarly b11(i) = 2

∑

k∈Z
a00(i+1− 2k)− a00(i− 2k).

With the hypotheses, we can conclude that Bi = 0 for i /∈ [σ − 1, σ′ + 1].
For i ∈ Z and n ∈ N, equation (11) gives

f
(1)
n+1(i) =

∑

j 2a10(i− 2j)2nf
(0)
n (j) +

∑

j 2a11(i− 2j)f
(1)
n (j) and these sums are finite.

We remark that
2a10(i) = 2

∑∞

k=1[a10(i+ 2 − 2k) − a10(i− 2k)] = b01(i+ 2) − b01(i). So that

∑

j 2a10(i− 2j)2nf
(0)
n (j) =

∑

j[b01(i+ 2 − 2j) − b01(i− 2j)]2nf
(0)
n (j)

=
∑

j b01(i− 2j)2nf
(0)
n (j + 1) −

∑

j b01(i− 2j)2nf
(0)
n (j)

=
∑

j b01(i− 2j)2n∆f
(0)
n (j)

After substituting in (11), we obtain

f
(1)
n+1(i) =

∑

j

[b00(i− 2j)f (1)
n (j) + b01(i− 2j)2n∆f (0)

n (j)]. (18)

Similarly, a00(i) =
∑∞

k=1[a00(i + 2 − 2k) − a00(i − 2k)] from which we deduce:
2[a00(i+ 1) − a00(i)] = b11(i+ 2) − b11(i). Using (10), we obtain

f
(0)
n+1(i+ 1) =

∑

j a00(i+ 1 − 2j)f
(0)
n (j) +

∑

j a01(i+ 1 − 2j)f
(1)
n (j)

f
(0)
n+1(i) =

∑

j a00(i− 2j)f
(0)
n (j) +

∑

j a01(i− 2j)f
(1)
n (j)

,

so that

2n+1∆f
(0)
n+1(i) =

∑

j 2[a00(i+ 1 − 2j) − a00(i− 2j)]2nf
(0)
n (j)

+
∑

j 2[a01(i+ 1 − 2j) − a01(i− 2j)]f
(1)
n (j)

= −
∑

j b10(i− 2j)f
(1)
n (j) +

∑

j[b11(i+ 2 − 2j) − b11(i− 2j)]2nf
(0)
n (j).

12



This gives

2n+1∆f
(0)
n+1(i) =

∑

j

[b10(i− 2j)f (1)
n (j) + b11(i− 2j)2n∆f (0)

n (j)]. (19)

Formula (17) is equivalent to Formulae (18-19). 2

We will say that the vector subdivision scheme whose mask is {Bi} in the previous
theorem is associated with the Hermite subdivision scheme of mask {Ai}.

Corollary 18 The vector scheme associated with a nondegenerate C1 Hermite sub-
division scheme is C0. If φ is the limit function associated with refinements fn in the
Hermite scheme, (φ′, φ′)T is the limit function of the refinements gn of the associated

vector scheme with g0(i) = (f
(1)
0 (i),∆f

(0)
0 (i))T .

This follows from Lemma 16 and Theorem 17.

7 The basic matrix function

Definition 10 The basic matrix refinements of a Hermite subdivision scheme is the
recursive sequence of matrix functions Φn (Φn : Z → R

2×2):

Dn+1Φn+1(i) =
∑

j∈Z

Ai−2jD
nΦn(j), i ∈ Z, n ∈ N, (20)

with Φ0(i) = δ0iI, where I is the identity matrix of order 2.

Remark 5 There is a close link between the first matrix refinement Φ1 and the mask
of a Hermite scheme: Ai = DΦ1(i).

From Corollary 2, we deduce that for any initial data f0(i) we have

fn(i) =
∑

j∈Z

Φn(i− 2nj)f0(j), i ∈ Z, n ∈ N.

Definition 11 If Φn is the sequence of basic matrix refinements of a C1 Hermite
subdivision scheme, then there exist two functions φ0, φ1 : R → R such that for any
x ∈ R and for any sequence of integers in with limn→∞ in/2

n = x,

lim
n→∞

Φn(in) =

(

φ0(x) φ1(x)
φ′

0(x) φ′
1(x)

)

. (21)

We define the basic matrix function of a C1 Hermite subdivision scheme as the

matrix Φ(x) =

(

φ0(x) φ1(x)
φ′

0(x) φ′
1(x)

)

.

13



Theorem 19 If Φ is the basic matrix function of a C1 Hermite subdivision scheme,
then

(∀x ∈ R)DΦ(x/2) =
∑

j∈Z

Φ(x− j)Aj. (22)

Proof: We consider a sequence of integers in such that limn→∞ in/2
n = x. From

(4) and the previous remark,

Φn+1(in) =
σ′

∑

j=σ

Φn(in − 2nj)Aj.

By taking the limit as n→ ∞, we get (22) 2

8 Spectral properties of Hermite schemes

In this section, we assume that the Hermite subdivision scheme of mask Ai is C1 and
nondegenerate. We introduce the supermatrix H = (Ai−2j). We show that 1 and 1/2
are two eigenvalues for H.

Lemma 20 Let z1, z2, ..., zd be d distinct complex numbers and p1, p2, ..., pd be d
nonzero polynomials, we assume that the sequence un =

∑d

k=1 pk(n)zn
k , n = 0, 1, 2, ...

converges to L. If L 6= 0, then there is an integer j ∈ [1, d] such that zj = 1, the
degree of pj is 0 and for every other integer k ∈ [1, d], |zk| < 1. If L = 0, then for
every integer k ∈ [1, d], |zk| < 1.

Proof: We can suppose that |z1| ≤ |z2| ≤ . . . ≤ |zd| and if |zk| = |zk+1| then
deg(pk) ≤ deg(pk+1). Let ρ = |zd| and ν = deg(pd). We suppose that |zj| = . . . = |zd|
and deg(pj) = . . . = deg(pd) with |zj−1| < |zj| or (|zj−1| = |zj| and deg(pj−1) <
deg(pj)). Writing ck the coefficient of xdeg(pk) in pk, the sequence un is asymptotically

equal to the sequence vn =
d

∑

k=j

ckn
νzn

k which converges to L.

Let us define wn = vn/(n
νzn

d ). Since |
n

∑

`=0

ei`θ| ≤ 2/|1 − eiθ| for θ 6= 2kπ, k ∈ Z,

the arithmetical means (w0 + w1 + . . . + wn)/(n + 1) converges to cd. Neither ρ > 1
nor (ρ = 1 and ν > 0) may occur. Otherwise the sequence wn would converge to 0,
this would imply that cd = 0 by the Cesàro theorem. But cd 6= 0 since pd 6≡ 0.

First case: ρ < 1, then the sequence vn converges to 0 and L = 0.
Second case: ρ = 1 and ν = 0. If vn converges to 0 then the sequence wn = vn/z

n
d

and the arithmetical means (w0 +w1 + . . .+wn)/(n+ 1) converge to cd = 0 which is
impossible. So that L 6= 0. Now the arithmetical means (v0 + v1 + . . . + vn)/(n+ 1)
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converges to L. Again, since |
n

∑

`=0

ei`θ| ≤ 2/|1 − eiθ| for θ 6= 2kπ, k ∈ Z, there exists

j0 ∈ {j, . . . , d} such that zj0 = 1. This j0 is unique because the zk are distinct and
the sequence (v0 + v1 + . . . + vn)/(n + 1) converges to L = cj0 . Suppose that there
exists j1 ∈ {j, . . . , d} with j1 6= j0. Let xn = (vn − L)/zn

j1
. Then the sequence xn

converges to 0 and the arithmetical means (x0 + x1 + . . .+ xn)/(n+ 1) converges to
0 and to cj1 which is impossible. To conclude this case, L 6= 0, there exists a unique
zk with |zk| = 1 and zk = 1.

2

Theorem 21 We consider a nondegenerate C1 Hermite subdivision scheme with
mask {Ai} and support [σ, σ′]. If [H] = (Ai−2j), i, j ∈ [−σ′,−σ], then 1 and 1/2
are simple roots of the characteristic polynomial of [H] and any other eigenvalue is in
the disk |λ| < 1/2. Moreover there is c ∈ R such that the vector function v : Z → R

2

where v(i) = (i+ c, 1)T is the eigenvector with the eigenvalue 1/2.

Proof: Since the support is [σ, σ′], by using (9), we have

Dn+1fn+1(i) =
−σ
∑

j=−σ′

Ai−2jD
nfn(j), −σ′ ≤ i ≤ −σ, n ∈ N., (23)

If Vn = Dnfn(i),−σ′ ≤ i ≤ −σ, then Vn+1 = [H]Vn. Let m(z) be the minimal

polynomial of [H]. If Vn = (vn(i)),−σ′ ≤ i ≤ −σ, vn(i) = (v
(0)
n (i), v

(1)
n (i))T , then for

every k ∈ {0, 1}, for every i ∈ [−σ′,−σ], the sequence v
(k)
n (i) n = 0, 1, 2, ... satisfies

a finite difference equation whose characteristic equation is m(z). In order to show
that, we write m(z) = zν −

∑ν−1
j=0 ajz

j, and we have [H]νVn =
∑ν−1

j=0 aj[H]jVn. We

deduce that v
(k)
n+ν(i) =

∑ν−1
j=0 ajv

(k)
n+j for i ∈ [−σ′,−σ] and k = 0, 1. This gives the

result.
If the roots of m are λ`, ` = 0, ..., ν, then for every k ∈ {0, 1}, ` = 0, ..., ν and

i ∈ [−σ′,−σ], we can find polynomials pk,`,i(n) depending on the initial data such
that

f (k)
n (i)/2kn =

ν
∑

`=0

pk,`,i(n)λn
` , n = 0, 1, ... (24)

Now, we choose a sequence of refinements fn for which the associated limit function
φ is such that φ(0) = 1, φ′(0) = 0. As the sequence f

(0)
n (0) converge to 1 when n→ ∞,

we get limn→∞

∑ν

`=0 p0,`,0(n)λn
` = 1. From Lemma 20, one eigenvalue of [H] is 1.

Similarly, for a sequence of refinements fn for which the associated limit function
φ is such that φ(0) = 0, φ′(0) = 1. For any i ∈ Z, the sequence i/2n converges to 0 and

f
(1)
n (i) converge to φ′(0) = 1 as n → ∞. We get limn→∞

∑ν

`=0 p0,`,i(n)(2λ`)
n = 1. So

that one eigenvalue of [H] is 1/2. Notice that for the eigenvalue λj = 1 the polynomial
p1,j,i is 0.
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For an eigenvalue λ of [H], we consider an eigenvector V = (v(i)−σ′≤i≤−σ with
v(i) = (v(0)(i), v(1)(i))T ∈ R

2. We set f0(i) = v(i) if i ∈ [−σ′,−σ] and f0(i) = 0
otherwise. If fn are the refinements of f0, for k = 0, 1, we get

f (k)
n (i)/2kn = λnv(k)(i), i ∈ [−σ′,−σ], n = 0, 1, ... (25)

Case |λ| ≥ 1.
Let i be in [−σ′,−σ]. For k = 1, the convergence of the Hermite subdivision scheme
gives v(1)(i) = 0. Now with k = 0, we obtain λ = 1 and v(0)(i) = c. Since v(1)(i) = 0.
we have v(0)(i) = c 6= 0. The eigenspace {V : [H]V = V } has dimension one.

Case 1/2 ≤ |λ| < 1.

By convergence of the scheme we get that limn→∞ 2n∆f
(0)
n (i) = limn→∞ f

(1)
n (i) = c1.

We show that it is impossible that c1 = 0. Otherwise we get v(1)(i) = 0 and ∆v(0)(i) =
0 for i ∈ [−σ′,−σ]. It follows that v(0)(i) = c0. This means that [H]V = V and it is
a contradiction with [H]V = λV , |λ| < 1. There is no loss of generality by assuming
c1 = 1. From the fact v(1)(i) = 1 and ∆v(0)(i) = 1. It follows that v(0)(i) = c+ i. The
dimension of {x : [H]V = 1/2V } is one.

1 and 1/2 are eigenvalues of [H] and all other eigenvalue λ satisfies |λ| < 1/2. The
last step of the proof is to show that 1 and 1/2 are simple roots of m.

Let λ ∈ {1, 1/2}. If µ > 1 is the multiplicity of this root λ, then there is a vector
v = (v(i)),−σ′ ≤ i ≤ −σ such that ([H] − λI)µv = 0 and ([H] − λI)µ−1v 6= 0. This
is a consequence of the primary decomposition of a vector space (see Theorem 4.2 in
Lang’s book [15]). We set w = ([H] − λI)µ−2v and w′ = ([H] − λI)µ−1v. It follows
that [H]nw = λnw + nλn−1w′.

We set f0(i) = w(i) if i ∈ [−σ′,−σ] and f0(i) = 0 otherwise. If fn are the
refinements of f0, we get

Dfn(i) = λnw(i) + nλn−1w′(i), i ∈ [−σ′,−σ], n = 0, 1, ... (26)

From the convergence of the sequence of vector fn(i), we get that w′(i) = 0 for any
i, which is impossible. This shows that 1 and 1/2 are simple roots of the minimal
polynomial of [H]. Since for λ = 1 and 1/2, λ is a simple root of m and the dimension
of {x : [H]V = λV } is one, then 1 and 1/2 are simple roots of the characteristic
polynomial of [H]. 2

For a Hermite subdivision scheme of mask Ai, we set

α0r =
∑

i≡r mod 2

a00(i) , α1r =
∑

i≡r mod 2

a10(i),

β0r =
∑

i≡r mod 2

[−a00(i)i+ 2a01(i)] , β1r =
∑

i≡r mod 2

[−a10(i)i+ 2a11(i)]

for r = 0, 1.
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Lemma 22 If the following conditions hold

α00 = α01 = 1, α10 = α11 = 0, β00 = β01, β10 = β11 = 1, (27)

then the vector X0 = (x0(i))i∈Z with x0(i) = (1, 0)T is a right eigenvector for the
matrix H = (Ai−2j)i,j∈Z with 1 as eigenvalue and the vector X1 = (x1(i))i∈Z with
x1(i) = (i− β00, 1)

T ) is a right eigenvector for the matrix H with 1/2 as eigenvalue.
In a nondegenerate C1 Hermite subdivision scheme of mask Ai, the conditions

(27) are always satisfied.

Proof: Let Y0 = HX0 . Then y0(i) =

(
∑

j a00(i− 2j)
∑

j a10(i− 2j)

)

=

(

α0r

α1r

)

, where r ∈

{0, 1} and i ≡ r mod 2. Under the hypotheses (27), we get Y0 = X0 and HX0 = X0.
If Y1 = HX1 then for any i ∈ Z and i ≡ r mod 2,

y1(i) =

(
∑

j[a00(i− 2j)(j − β00) + a01(i− 2j)]
∑

j[a10(i− 2j)(j − β00) + a11(i− 2j)]

)

=
1

2

(
∑

j[−a00(i− 2j)(i− 2j) + 2a01(i− 2j)] +
∑

j a00(i− 2j)(i− 2β00)
∑

j[−a10(i− 2j)(i− 2j) + 2a11(i− 2j) +
∑

j a10(i− 2j)(i− 2β00)

)

=
1

2

(

β0r + (i− 2β00)α0r

β1r + (i− 2β00)α1r

)

.

Under the hypotheses (27), we get Y1 = X1/2 and HX1 = X1/2.
Conversely, if the scheme is C1 and non degenerate. Let X0 = (x0(i))i∈Z with

x0(i) = (1, 0)T and [X0] = (x0(i))−σ′≤i≤−σ. By the previous Theorem, [X0] is a right
eigenvector for the matrix [H] = (Ai−2j)−σ′≤i,j≤−σ with 1 as eigenvalue. This implies

that X0 is an eigenvector of H with eigenvalue 1. X0 = HX0 gives x0(i) =

(

α0r

α1r

)

=
(

1
0

)

with r ∈ {0, 1} and i ≡ r mod 2. So that α00 = α01 = 1, α10 = α11 = 0.

Similarly X1 = (x1(i))i∈Z with x1(i) = (i + c, 1)T ) is a right eigenvector for the
matrix H for the eigenvalue 1/2 and HX1 = 1/2X1 gives

x1(i) =

(

β0r + (i+ 2c)α0r

β1r + (i+ 2c)α1r

)

=

(

i+ c
1

)

and we conclude. 2

A way to summarize these facts is to use the matrix with two columnsX = (X0X1)
and to see that HX = XD.

Theorem 23 If Φ(x) =

(

φ0(x) φ1(x)
φ′

0(x) φ′
1(x)

)

is the basic matrix function of a nonde-

generate C1 Hermite subdivision scheme of support [σ, σ′], then

σ′

∑

j=σ

φ0(j) = 1,
σ′

∑

j=σ

[(j − c00)φ
′
0(j) + φ′

1(j)] = 1.
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Proof: For n = 1, 2, ..., HnX0 = X0. From Lemma 1, we get

∑

j

DnΦn(i− 2nj)

(

1
0

)

=

(

1
0

)

.

We set i = 0 and we let n tends to ∞. We get
∑σ′

j=σ φ0(j) = 1 with Proposition 4.
For n = 1, 2, ..., HnX1 = X1/2

n, we also get

∑

j

[DnΦn(i− 2nj)

(

j − β00

1

)

] =

(

i− β00

1

)

/2n.

We set i = 0 and we let n tend to ∞ and we get
∑σ′

j=σ[(j− β00)φ
′
0(j) + φ′

1(j)] = 1. 2

We introduce an infinite row vector.

U = ( · · · Φ(−2) Φ(−1) Φ(0) Φ(1) Φ(2) · · · ) ,

with Φ(x) ∈ R
2×2. The number of nonzero components of U is finite. If we take

x = 0 in (22), we get UH = DU . If U0 = (1, 0)U,U1 = (0, 1)X, then U0H = U0 and
U1H = U1/2. U0, U1 are left eigenvectors of H for the respective eigenvalues 1, 1/2.
Moreover U0X0 = U1X1 = 1.

9 Necessary and/or sufficient conditions for con-

vergence

A first necessary condition for C1 convergence of a Hermite subdivision scheme H is
that the sequence of powers [H]n converge. Another necessary condition is given by
Corollary 18, the associated vector subdivision scheme S with the mask {Bi} is C0.
We now propose a sufficient condition for C1 convergence of H.

Theorem 24 Let H be a Hermite subdivision scheme which reproduces constants, let
S be the associated vector subdivision scheme, we assume that S is affine and that
one of its norming factors is < 2, then the Hermite subdivision scheme is C1.

Proof: Let Ai =

(

a00(i) a01(i)
a10(i) a11(i)

)

be the mask of H. If fn is a sequence of refine-

ments according to H, the sequence gn = (2n∆f
(0)
n , f

(1)
n )T is a sequence of refinements

according to S. From Theorem 13, there is a function φ1 : R → R such that (φ1, φ1)
T

is the limit of the refinements gn.
We now prove the convergence of the sequence f

(0)
n (0). By using the reproduction

of constants of H, we get

f
(0)
n+1(0) − f (0)

n (0) =
M

∑

j=−M

[a00(−2j)(f (0)
n (j) − f (0)

n (0)) + a01(−2j)f (1)
n (j)/2n]
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where M = max{|i| : A2i 6= 0}. Since for i = −M, ...,M , each sequence 2n∆f
(0)
n (i)

and f
(1)
n (i) is bounded, then f

(0)
n+1(0) − f

(0)
n (0) = O(1/2n) and f

(0)
n (0) converge as

n→ ∞. The hypotheses of Proposition 15 are fulfilled. The sequence of refinements
fn has a limit. The Hermite scheme is C1. 2

Remark 6 If H reproduces constants, then by Lemma 22, S is affine if only if

∑

j

Ai−2j

(

i− β00

1

)

=
1

2

(

i− β00

1

)

, i = 0, 1

where β00 =
∑

i∈Z
[−a00(2i)2i + 2a01(2i)]. If S is not affine, then H is degenerate or

is not C1, there is no other choice.

10 Examples of Hermite subdivision scheme

Example 1. We consider the one-parameter family of Hermite subdivision schemes

Dn+1fn+1(2i) = A0D
nfn(i) + A−2D

nfn(i+ 1)

Dn+1fn+1(2i+ 1) = A1D
nfn(i) + A−1D

nfn(i+ 1)

where the nonzero matrices Ai,−2 ≤ i ≤ 1 are respectively equal to

(

0 c/2
0 0

)

,

(

1/2 −1/8 + c/2
3/4 −1/8

)

,

(

1 0
0 1/2

)

,

(

1/2 1/8
−3/4 −1/8

)

.

From Theorem 17, the sequence gn(i) = (2n∆f
(0)
n (i), f

(1)
n (i))T , n = 0, 1, 2, . . . is

the sequence of refinements of a vector subdivision scheme of mask Bi. The nonzero
matrices of the mask are Bi,−3 ≤ i ≤ 1 which are respectively equal to

(

0 0
c 0

)

,

(

0 0
−1/4 0

)

,

(

−1/4 0
1/4 − c 0

)

,

(

1 0
1/4 1

)

,

(

−1/4 3/2
−1/4 1

)

.

The parameter τ ′ = max{i : Bi 6= 0} is equal to 1. The parameter τ = min{i : Bi 6=
0} is equal to -3 if c 6= 0, otherwise τ = −2.

Example 1a, c = 0. In this case, the Hermite subdivision scheme is inter-
polatory and converges to the Hermite cubic spline. If fn is a sequence of refine-
ments according to this Hermite subdivision scheme, if φ is the unique cubic spline
with nodes on Z such that (∀n ∈ Z)(φ(n), φ′(n))T = f0(n), then φ is the limit of
the refinements and the scheme is convergent. The first 5 values of κn, n ≥ 1 are
3.5000, 3.6250, 3.0313, 2.0469, 1.1680. Since κ5 < 2, we get the numerical confirma-
tion that the scheme is convergent.

The truncated matrix [H] = (Ai−2j),−1 ≤ i ≤ 1,−1 ≤ j ≤ 1 is a square matrix
with 6 × 6 real entries. The characteristic polynomial of [H] is (λ− 1)(λ− 1/2)(λ−
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1/4)2(λ − 1/8)2. Any eigenvalue other than 1 and 1/2 is in the unit disk |λ| < 1/2.
The eigenvector with the eigenvalue 1/2 is (−1, 1, 0, 1, 1, 1)T .

Example 1b, c = 1/16. In this case, the Hermite subdivision scheme is not
interpolatory. The first 5 values of κn, n ≥ 1 are 4, 3.6250, 3.4766, 2.5547, 1.6875.
Since κ5 < 2, we get the numerical confirmation that the scheme is convergent.

The truncated matrix [H] is of order 8 and its characteristic polynomial is (λ −
1)(λ − 1/2)(λ − 1/4)2(λ − 1/8)2λ2. The eigenvector with the eigenvalue 1/2 is
(−17/16, 1,−1/16, 1, 15/16, 1, 31/16, 1))T (as predicted by Theorem 21).

Let Φ(x) =

(

φ0(x) φ1(x)
φ′

0(x) φ′
1(x)

)

be the basic matrix of the Hermite subdivision

scheme corresponding to the parameter c = 1/16, in Figure 1, we plot the graphs of
the four functions φ0 (left, up), φ1 (right,up) , φ′

0 (left, bottom), φ′
1 (right, bottom).

−2 −1 0 1
0

0.2

0.4

0.6

0.8

1

φ
0
(x)

−2 −1 0 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

φ
1
(x)

−2 −1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

φ’
0
(x)

−2 −1 0 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

φ’
1
(x)

Figure 1: Basic matrix function of a non-interpolatory Hermite subdivision scheme

Example 2. We consider the one-parameter family of Hermite subdivision schemes.

The matrices of the mask areA0 =

(

1 − u 0
0 1/2 − u/4

)

, Aε =

(

243/512 81ε/512
−405ε/512 −81/512

)

,
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A2ε =

(

u/2 0
0 u/8

)

, A3ε =

(

13/512 3ε/512
−5ε/512 −1/512

)

for ε = ±1. Otherwise Ai = 0.

Example 2a, u = 0. In this case, the Hermite subdivision scheme is interpolatory
and one of its main properties is that any polynomial p of degree ≤ 7 is reproduced, i.e.

the sequence of refinements of f0(i) =

(

p(i)
p′(i)

)

is fn(i) =

(

p(i/2n)
p′(i/2n)

)

. We already

described this example in a previous paper [6].
The first 6 norming factors are 4.5547, 4.2952, 4.2276, 3.6849, 2.3116, 1.2326. The

6th norming factor being < 2, we get the confirmation that the scheme is C1. The
truncated matrix [H] = (Ai−2j), i, j ∈ [−3, 3] is a 14×14 matrix. The eigenvalues are
1, 1/2, 1/4, 1/8 (double root), 1/16, 1/32, 1/64 (double root), 1/128 and four other
unrecognized small values. The presence of the eigenvalue 1/2k, 0 ≤ k ≤ 7, comes
from the fact that the function xk is reproduced. The eigenvector with the eigenvalue
1/2 is (−3, 1,−2, 1,−1, 1, 0, 1, 1, 1, 3, 1)T .

Example 2b, u = −1/6. In this case, the Hermite subdivision scheme is not
interpolatory. The first 10 norming factors are 4.55, 5.15, 5.76, 6.17, 5.44, 5.54, 5.62.
5,84, 6,10, 6.37. No conclusion can be drawn from this sequence. Nevertheless one of
the eigenvalue of the truncated matrix [H] of order 14 is 0.5221, which is outside the
disk λ < 1/2. From Theorem 21, this Hermite subdivision scheme cannot be C1.

11 Comparison with another criterion of conver-

gence

Dyn and Levin [8] found a criterion of C1 convergence for interpolatory Hermite
subdivision schemes. Let us describe this criterion. Let H be a Hermite subdivi-

sion scheme which reproduces constants, let Bi =

(

b00(i) b01(i)
b10(i) b11(i)

)

be the mask of

its associated vector subdivision scheme S. We assume that the associated vector
subdivision scheme is affine. The subdivision matrix of S is S = (s(i, j)) where
s(2i + k, 2j + `) = bk`(i− 2j), i ∈ Z, j ∈ Z, k, ` = 0, 1. By hypothesis, the matrix S
is affine,

∑

j∈Z
s(i, j) = 1. From Proposition 10 of Daubechies et al. [5], the matrix

S ′ = (s′(i, j)) defined as

s′i,j = −

j
∑

k=−∞

(si+1,k − si,k),

is the subdivision matrix of a subdivision scheme S ′. Let s′n(i, j) be the ij-entry of
the n-th power of S ′, then we define the sequence

νn = max{
∑

j∈Z

|s′n(i, j)| : i = 0, 1, 2, 3}.

Then H is C1 if and only if there exists an integer n for which νn < 1 (see Theorem
3 of [9]).
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For each example of the previous section, we give the first numbers νn. In example
1a, ν1 = 1, ν2 = 5/8; in example 1b, ν1 = 1.1250, ν2 = 0.8125; in example 2a, ν1 =
1.1016, ν2 = 0.6776; in example 2b, the first ten numbers are 1.43, 1.51, 1.58, 1.65,
1.72, 1.79, 1.87, 1.96, 2.043, 2.13. In these examples, the criterion of Dyn and Levin is
more efficient than our criterion with the norming factors κn. Nevertheless, for other
affine vector subdivision schemes, it may happen that the norming factors behave
better. Moreover, one should point out that the criterion of convergence with the
sequence κn can be easily extended to multivariate vector subdivision schemes while
the criterion of convergence with the sequence νn does not have an easy extension.
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