The length of the de Rham curve
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Abstract

The length L of the de Rham curve is the common limit of two monotonic
sequences of lengths (") and (L") of inscribed and circumscribed polygons
respectively. Numerical computations show that their convergence is linear
with the same convergence rate. This result is easy to prove for the parabola.
For arbitrary de Rham curves, we prove two nearby results. Firstly, the
existence of a limit ¢ €]0, 1] of the sequence of ratios (L"*' — L)/(L™ — L)
implies the convergence to the same limit of the two sequences (["*'1—L)/(I"—
L) and (L"t —{"*t1) /(L™ —I"). Secondly, the sequence (L"*'— L") is bounded
by a convergent geometric sequence. In practice, this allows to accelerate the
convergence of both sequences by standard extrapolation algorithms.

1. Introduction

The de Rham curve C,, studied in [3], is the limit of a sequence of polygons
depending on a parameter ~.
We are interested in the computation of the length L of this curve. This
problem was already considered by other authors in the context of computer-
aided geometric design, in particular for piecewise polynomial or rational
curves (see e.g. [4],[5]). In a further paper, we shall develop applications to
the problem of constructing an interpolating convex curve with prescribed
length.

Here is an outline of the paper: in Section 2, we recall the construction
of the curve C, and its known properties. In Section 3, we first define upper
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and lower approximations of L as the lengths of two approximating polygons.
They form two sequences (L") and (I™) which both converge monotonically
to L. In Section 4, we study the convergence speed of (L") to L. Numerical
computations strongly suggest that both sequences (L") and (I") converge

lineary to L for all v > 1 (various examples are given in Section 6). We prove
Ln—l—l _ Ln

that the existence of ¢ = n1_1>£_noo Tn_ -1 €]0, 1], with ¢ # T2 implies
Ln-l—l - ln-l—l — I

the existence of lim ——— and lim ————; moreover these limits
n—+too 7 — [, n—+00 ln — L

are also ¢. But we did not succeed in proving the existence of this limit,
except for the parabola (v = 2). In that case, we prove in Section 5 that
both limits are equal to 1/4. However, in the general case, (y > 1), we can
prove that there exist constants ¢ > 0 and 0 < x < 1 depending on 7 such
that |L"t! — L"| < ¢x™. This shows that the convergence of (L") is at worst
linear.

Finally, this suggests the possibility of accelerating the convergence of the
two sequences (L") and (I") by the e-algorithm or the iterated Aitken’s A?
algorithm (see e.g. chapter 2 of [1]), since they do not need the knowledge
of the exact rate of convergence of these sequences.

2. Construction and properties of the de Rham
curve

Let ABC be a triangle. The curve is the limit of a sequence of polygons,
{P",n=0,1,2,...} starting with P° = {A, B,C'}. Then the points dividing
in three parts the sides of the polygon P" obtained at the n-th step are the
vertices of the next one. The three parts have lengths proportional to 1,~,1
successively. The number of sides of P™ is 2" 4+ 1.

We denote by S¢, ST, ..., S35, the vertices of P". The construction of

de Rham in order to get the next polygon P+t = {Sy+t S+t ;,Z'],ll_l_l}
from the previous one P" is as follows. Sl = (1 — B)Sr + [35 %, and
Syt =pBSr 4+ (1 —B)Sr, for i =0...2", where 3 =1/(y + 2).

In Fig. 1, we show the first step in the construction of de Rham with
={A,B,C}and P' ={A", B, C",D'}.



Figure 1: The first step in the construction of de Rham

The following properties are given by de Rham.

e The polygons P" are convex and the sequence (P") converges to a
curve (., which is continuous and convex.

e (', is tangent at the midpoint of each side of P".
o If v > 1, C, has a tangent at each point and the slope m is continuous.

e For v =2, C; is an arc of a parabola from the midpoint of [AB] to the
midpoint of [BC].

For the next sections, we shall suppose v > 1.



3. Upper and lower approximations of the
length of the curve

We denote by M, M7, ..., MJ, the midpoints of the sides of P". Let L™ be
the length of P" measured from the midpoint M of the first side to the mid-
point M7, of the last one, and let [ be the length of the polygonal line joining
the midpoints: My M7 ... MJ,.With these notations, M = (SF+57,)/2 and
M3 = M?P. We write |U| for the euclidean norm of the vector U. Thus,
we have

LY = [Mg 57| + [SYMY] = (|AB| + | BCY)/2,

P = |AC| /2.
and for all n € IN
2n_1
Z |MPST |+ 1S M |
2"—1
[" = Z |MinMi7E|—1|
=0

From now on, we shall omit the upper index n in M if it is not necessary
for the comprehension; similarly, we shall write M} instead of M}H'l.

Proposition 1 For all n € IN, there holds
~L™ 4207
v +2
Proof : Let j = 2:, then for : = 0...2" we have,

MESE | S0 M+ 1103 15000
|MS+1|‘|'| J+1 -|-2|‘|'| j+2 -|-2|

~
i i i—|—1| + — | 7 2—|—1| —I' |SZ-|—1MZ-|—1|

7+2

Ln—l—l _

v+ 2
M. S; S, M, — | M; M,
——(] +1| + [Siq +1|)+’y—|—1' +1]

-I- 2
Addmg these equalities gives the result, since
antl_q
L = Z |M’S§+1| +15; J+1 J/‘+1|- -
7=0

Proposition 2 The two sequences (L") and (") are respectively decreasing
and increasing and they converge to the same limit L, which is the length of

c,.



S+2

Figure 2: The main parameters in the construction of de Rham

Proof : Let again j = 2:

L |Mz’Mi+1| = |M]/M]/+2| < |M]/M]/+1| + |M]{+1M]{+2|7
therefore {* < [*F1.

e similary
| M;Siqr| 4 | Sig1 Migq |
= |MiS§‘+1| + |S§‘+1Si+1| + |Si+155‘+2| + |S§‘+2Mi+1|
> |MiS§+1| + |S;‘+1S;‘+2| + |S;‘+2Mi+1|
= |M3S5 [+ 1S5 My |+ [MG 1 55| + 1S5 M),
therefore L™ > L"*1.

e Now L™ > |AC|/2 and I" < (|AB| 4+ |BC|)/2, so that both sequences
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are converging respectively to [ and [. From the preceding proposition,

we deduce L =1, which is the length of C,,.

4. On the rate of convergence of the sequence
Ln

We shall now study the asymptotic behavior of the sequence (L"™); we first
prove that when n goes to 400 the ratios of the lengths of any two consecutive
sides of P" are uniformly bounded, then we prove that the angle between
two sides tends to m. With the help of these preliminary results we shall be
able to study the convergence of (L").

We denote by )\0 == |S()Sl|,)\1 == |5152|,...,)\2n == |Szn52n+1| the suc-
cessive lengths of the sides of P™ and by Aj, Ai,...,A).qi those of P"*1.
The sides of P™ (resp P"*') make angles 8y = /(S0S1,5152),...,02n_1 =
L(Sgn_ySan, SanSongy) (resp 0p, ..., 05,41 ). See fig 2.

n+1 n
In _ -1
have proved in [1] that for a sequence (u™) converging to u € € and for ¢ € €

un—l—l —u un—l—l _ un

with |¢| #1, lim ———— =g if and only if lim —— =g¢.
n—+oo Yy — u n—4oo yn — yn—1
With the next proposition, we shall be able to get the rate of convergence

of (I") from the one of (L").

We shall study the ratio ; indeed, Brezinski and Redivo Zaglia

n+l _ L
Proposition 3 If nl—lgl—nooﬁ = q with ¢ # 1 and q # 77? then
) ln—l—l _ L ) Ln—l—l _ ln—l—l

Proof : By Proposition 1, (v + 2) L™t = ~L" 4 2[",
then (v +2)L =~L + 2L. So that, by difference
(v +2)(L" — L) —~(L" — L) =2(" — L) and
(v +2)(L" = L) —~(L" ' — L) =2(I""* — L) from the preceding step.

By division, we successively get:

(y +2) (L™ — L) — (L™ — L) " — L
(2Lt = L) —5(Lt = 1) L
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L DL L)~y _ I

y4+2—~(Lrt = L)/(L"— L) B s N
As n tends to 400, we get
2)g — [Pt —r
P G ) e BTN

Sy +2-9/qg ke - L

as soon as q # S
v +2
Similarly, using (y+2)[(L"t — L) — (L™ — L)] = 2(I" — L") and the preceding
step, we easily get
qg—1 . TR
T 1 1jq  noee ol — [

q

as soon as ¢ # 1. O

Proposition 4 For every n € IN we have

2"—1

1
Ln-l—l_Ln:— ()\Z—I_)\H'l)(\ll

4)\2')\2'4_1 COSQ((QZ'/Q) 1)
> —I_ 2 =0 ‘

(A 4+ Aig1)?

Proof :
We recall that 8 = 1/(y + 2), we set o = v/(v + 2) and again j = 2i.
Then for : =0,1,...,2" — 1, writing a; = fA; and b; = Sy, we have

)\; = Oé)\i
Ny = \/%2 + b — 2a;b; cos b;

0;
= ¢(ai + b;)% — 4a;b; cos? B}

= ﬁ¢()\2 + Aig1)? — 4N A4 cos? %

AN Aia ;
— B 4 A )1 — AL 2
6( + -I-l)\/ ()\2 n )\i—l—l)z cos 9

and A.p1 = adgn
271

Using L" = X\g/2 + Z i + Agn /2 and a similar formula for L") we can

=1
evaluate ¢® = [Tt — [,



— Oé)\0/2—|—0é)\1—|—...—|—0é)\2n_1—|—Oé)\2n/2
2! ANidis :
A digi) 1 — DB o2
+ ; 6( + -I-l)\/ ()\2 n )\i—l—l)z cos 9
— (Mo/24+ M+ oo F Aaneg + An/2)

2= AN Aia L0 (a—=1)(N\i+ A1)
= > (5(A¢+Ai+1)¢1—mws §—|- 5 )
0

=0

2"—1

AN Aia ;
_ N A ) (1 = =2 e %y
g ; (A + +1)(¢ TS YE cos? 5 )

a

" A? . :
Proposition 5 Let r = =*L for i € {0,...,2"} be the ratios of two suc-

cessive lengths at step n. If v > 1, then there exist r° and R° such that:
for every n € N, for every 1 € {0,...,2"}, 7% <r? < RO,

Proof : First, let us remark that the angles 87 of P™ are bounded away
from 0 since 83 < " < 7. We can suppose that there exists #° € (0,7) such
that:

0° <0 <nm
. . Ait1
Now, omitting n and ¢, let r = IV 0 = £(S;Sit1, Siz15i42) and
Mo . '
ri = ;\/l,r;:)\f‘ , with 7 = 21.
J J+1

AT
(r2 —2rcosf + 1)%

We consider the two functions f and g defined by:

1 1 1
f(z) = —(2* =2z cos 0+ 1)2 and g(z) = yo(2? — 2z cos 0+ 1)72 with z > 0.
v

Then 7} = —(r® — 2rcos ) + 1)% and rf, = , see fig 2.
v

So we have | = f(r) and r}, = g(r). Since

22— 2xcosf+1 < :11:2—|—2:Jc—|—1:(l—l—:Jc)2
22 —2xcosf+1 > :1;2—2:1;608(90+128in200,

8



(r cosO,r sinB) LF.

0 b1

0 (1, 0)

Figure 3: Computation of angles in the construction of de Rham

we get the following bounds for f(x),z € R*:

in 69 1 1
T < fle) <~ < max(e,
v v v—1

and similarly, we obtain:

Y
sin #0°

min(z,y — 1) < g(x) <

|BC| sin §° |BC| ~ 1 )
|AB|’ |AB]|" sin 607 v —
Using the above inequalities,we immediately get the result by induction on
neN. O

,’y—l) and Rozmax(

Now let r° = min (

Proposition 6 There exists ¢ € IR and q €0, 1] such that
for every n € IN, for everyi € {1,...,2"}, |m — 07| < cq”

Proof :

In the following computations, we are using Fig. 2 and Fig 3. Let
us consider in the polygonal line P" the triangle 5;5;115:42. We set § =
L(S:Sip1s Sig1Si42). Hr =1Si41542]/]9:5:41], then the triangle S;.S;41542 is
similar to the triangle whose vertices are (1,0), (0,0), (r cos 8, r sin (9) If 5

21, we denote by @1 = £(S}S],,5%,,15],,) and 3 = A(S]_HS’_I_Q, 125 h3)



Since the triangle S} ;‘+IS;‘+2 is similar to 5;5;415;12, the vector W whose

endpoints are (1,0) and (7 cos 8, rsin §) makes an angle 1 with the z-axis. If
w = |W/|, one has the vector identity (w cos @1, ¢siner) = (rcosf—1,rsin ).
From this, it follows that

1 1
cot 1 = cot § — — ezcotﬁ——\/l—l—cotzﬁ.
r

T sin

Moreover ¢y = 0 — (7 — ¢1), hence

1 t 8 cot
cot g = +cotfco ('lecot@—r\/l—l—cotz@.

cot 1 — cot §

Setting m; = cot §;, m; = cot (9;, m;_l_l = cot (9;“ and r; = A1 /A, with

7] = 21, we get
v 1 mﬂ

m; =m; — ;I:il and m;_l_l =m; —r;\/1 +m;2.
Also, v/1 +m? > 1 and /1 +m? > —m; imply:
mf <m; — 1/ri, mi <my — 1y,
m’; < mi(1+1/r;) and mi, < mi(1 +r).
Let p = min(1/R%, r%) where R and r® are defined in the preceding propo-
sition. By induction: there exists ¢; € R such that for all n € IN and
te{l,...,2"}, m’ < ¢ —np, so that (m?) tends to —oo as n tends to +oo
and the angles 87 tend to =.
Similarly, there exists ¢o < 0 such that for all n sufficiently large and for
1€ {17 te 7271}7 m? S 02(1 + p)n
Then there exists a constant ¢35 > 0 such that

:

sin(m — 67) = < c3( = ¢3¢" with ¢ €]0,1[ and we can

S G - Ty

conclude that for some constant ¢4 > 0 there holds

[T — 07| < caq”.

O
Proposition 7 There exists ¢ € RY and k €]0, 1] such that for everyn € N,

|Ln—|—1 _Ln| S cr™
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Proof : From Proposition 4 we know that

J AN Aiy1 cos?(0;/2)
=L = —— S (N + A | — o Ay |
v+ 2 ;( +1)(\l ()\Z, + )\i+1)2 )

Now as /1 —a > 1 —x for x € [0, 1], we get

271 4y ). 20p.
| < 1 Z AN X1 cos?(0;/2)
v+ 2 Ai + A1

=0
9 21 T —0;
< — i + Aipq ) sin? -
S i ( +1)
2 2n
< —2Lc4q = ck"
v+ 2 2

5. The case of the parabola, v =2

Starting with the triangle ABC for v = 2, we obtain an arc of parabola (s
joining the midpoint Sy of [AB] to the midpoint Sy of [BC]. Let S; = B,
AS; = S;pp — S; and A%S; = AS;.; — AS;. In this particular case, we are
able to evaluate the length L of 3 and to estimate the convergence rates of
the sequences (L") and (I").

Proposition 8 The length L of the curve Cy is equal to:

;o IAS)*|ASY)? — (ASe.AS)? . (ASI.A250+|A51||A250|)
|A2S,[? ASp. A28y + |ASp||A2S|
IASY|(AS].A2S0) — |[ASo|(ASy.A2Sy)

A2

Proof : The equation of the parabola is
M(t) = So(1 —¢)* +251¢(1 — t) + Szt? with ¢ € [0, 1].

11



Since M’( ) = 2(ASe(1 — t) + ASl ), we obtain:

L= / M (1)]dt = 2/
where p(t) = ao(l — 1)+ 2a1t(1 — 1) + ast?,
|ASO| 5 ASO ASl, and Qo = |A51|2
Let AO[O = 01 — Qp = ASO A So, AOél = Qg — 1 — ASl.AQSO,
Aoy = Oé2 — 201 + ag = |A%Sy|?, then we have

apay — at = |ASo|?|AS)? — 5 (ASp.AS1)? > 0 by Schwarz inequality.

Now, let a® = M, then the change of variable
AQOéO
A
u=1t\/A%ag + 0 in the integral gives:
AQOKO
U1
L = / vu? + a?du,
\/ AQOéO ug
A A
with ug = 20 and uq i from which we deduce immediately:

2

A (87 - \ A20z07

a? up +/uf + a? Uy Ug
I = 1 L 2 2 _ 2 2
—Azao( n(u0+ T%_I_az)-I-QQ\/ul—l-a azx/uo—l-a
Since \/ud + a? = |ASpl|, \/ui + a? = |AS)]|, and

Ug ASO.A250 Uy . ASLAzSO

vA2a0: |A250|2 7\/A2040_ |A250|2 7
a®  |ASoPAS|? — (ASy.AS))?

D\/ Aag a |A250|3

, we obtain the desired result.

and

Proposition 9 The two sequences (L") and (I") converge linearly to L. More
specifically :
Ln—l—l _ L ) ln—l—l _ L ) Ln—l—l _ ln—l—l 1

Proof : For any function g € C'°°[0, 1], there hold respectively the two
following asymptotic expansions for the values of the trapezoidal rule and of
the midpoint rule with step length 1/2", (see e.g. [2], p. 189-190):

2"—1

[ ot = S50+ 3 atg)+ o) = A o)
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! 12 21 14 =gd0) |
[, ot TP T A 7 T L

This proves that the two sequences converge linearly to the integral with a
convergence rate equal to 1/4.
Applying these results to ¢g(t) = |M'(t)| gives the two first announced
limits, since
1
L= / |M'(t)|dt,

2"—1

1= o (51000) |+Z|M' ()| + 5 IM)]) and

2n(Z| o).

It suﬂices to prove these equalities for n = 0, as the general formulas are

1 @—I—l
50 o —],0€{0,...,2" = 1}.

With the notations of the previous proposition, we easily compute.
== |ASO| + |A51| and lO == |S()SQ| == |ASO + A51|

Since |M'(0)| = 2]ASy|, IM'(1)| = 2|AS;| and

|M'(3) = |ASy + AS;|, we see immediately that
= HIM(O)] + [M(1)]) and £ = [M(L)

are respectively the values of the trapezmdal rule and of the midpoint rule

summations of local formulas in each interval [—

1
applied to the integral L = / |M'(t)|dt. Similarly, L™ and " are respectively
0

the values of the composed trapezoidal and midpoint rules, with a step of
length h = applied to the same integral.

2n7
Finally, we compute
ASy.A%S
J'(0) = QW = 2|A*Sy] cos b
0
AS].A?
(1) = 2% = 2|A%Sy]| cos 0,
1

where 00 == Z(ASO,AQSO) and 01 == Z(AShAQSO),

hence ¢'(1) — ¢'(0) = 2|A?Sp|(cos 6 — cos by) # 0.

Similarly, the first term of the asymptotic expansion of L” — [ being equal

o L91) —g'(0)

o -2~/ I\
8 4n

, we deduce the third limit in the same way. O

13



6. Examples

In an orthonormal basis, let A = (=1,1), B = (0,0) and C = (1,2); the
following three tables show the computed values of the successive lengths

L7, [" and the ratios of their differences for different values of ~.

I — Ln—l [ — ln—l
n L l Ln—l _ Ln—? ln—l _ ln—?
0 | 1.825141 | 1.118034
1 | 1.421080 | 1.264372
2 | 1.331533 | 1.204985 | 0.221618 0.209189 v =15
10 | 1.3038891 | 1.3038886 0.251342 0.251176
11 | 1.3038888 | 1.3038887 0.251460 0.251360
I — Ln—l [ — ln—l

n L l Ln—l _ Ln—? ln—l _ ln—?

0 | 1.825141 | 1.118034

1 | 1.471587 | 1.315779

2 | 1.393683 | 1.355960 0.220347 0.203198 V=2
10 | 1.3685601 | 1.3685596 0.250000 0.250000

11 | 1.3685599 | 1.3685597 0.250000 0.250000

Ln _ Ln—l ln _ ln_l

n L l Ln—l _ Ln—? ln—l _ ln—?

0 | 1.825141 | 1.118034

1| 1.542298 | 1.398749

2 | 1.484878 | 1.447380 0.203009 0.173241 vy =3.

10 | 1.4650072 | 1.4650067 0.248206 0.248205

11 | 1.4650070 | 1.4650069 0.248208 0.248208

A
The last table shows the computed maximum and minimum values of ;\—"'nl at

14
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step n = 11; these extrema seem to converge to v — 1 and respectively

for v > 2 and to

1
1and’y—1f0r1<’y§2.

~v | max )\;\;1 min )\;\;1
1.5 1.9%6 0.506
1.8 | 1.251 0.801
n=11,| 2 1.001 0.999
2.5 | 1.500 0.667
3 2.000 0.500
5 | 4.000 0.250
10 | 9.000 0.111
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