A 4-Point Hermite Subdivision Scheme

Serge Dubuc and Jean-Louis Merrien

Abstract. A subdivision scheme based on 4 points with Hermite data
(function and first derivatives) on 7Z is studied. For a large region in the

parameter space, the scheme is C'! convergent or at least is convergent in
the space of Schwartz distributions. The Fourier transform of any inter-
polating function can be computed through products of matrices of order
2. The main tools for proving these results are the Paley-Wiener-Schwartz
theorem on the characterization of the Fourier transforms of distributions
with compact support, and a theorem of Heil-Colella about the conver-
gence of some products of matrices.

§1. Introduction

Hermite interpolatory subdivision schemes have been introduced by Merrien
[7]. He, Dyn and Levin [3,4] studied the convergence of these schemes to
regular functions. In this paper, we would like to consider the most general
case of a 4-point Hermite interpolatory symmetrical scheme using function
and first derivatives values. Such a scheme will be called HS41. We will study
the conditions giving a C'! interpolant (Section 2), and weaker conditions
allowing convergence in the space of Schwartz distributions. The last task will
be done by a computation of Fourier transforms (Section 3). This harmonic
analysis provides an additional tool to study the scheme, and allows extension
to functions which are not necessarily of class C'. To get the convergence
in distributions, we will use a result proved by Heil and Colella [6] on the
convergence of some infinite products of matrices arising in matrix refinement
equations.

§2. The Hermite Subdivision Scheme HS41

We assume that the function f and its first derivative p are known on ZZ.

Precisely, we have two sequences {yg, ¥} }rew, and we suppose f(k) = y; and
p(k) = y;. We build f and p on D, = ZZ/2" by induction. At step n, if
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’2_,11,#, ’2"';1, ’;}? are four successive points of D,, we compute f and p at
T = gf{ﬂ by the formulae:

D) = alf (D) + Fa) + i) + A

3]

141 7 d1 7+ 2 1 —1
PO e e

o) = 2l i) - f )+ 2 () A
b 4 p( ]+ ol ) + ()

Hence f and p are defined on D,41. The construction depends on eight
parameters. When we reiterate the process, we define f and p on the set of
dyadic numbers D, = | J D,, which is dense in R.

For by = dy = by = dy = 0, we recover 2-point subdivision schemes. We
call them HS21. They have been studied by Merrien [7] to get a C'! function
f with f" = p. Recently, Dubuc and Merrien [2] gave a new study of the
convergence of these schemes in the space of Schwartz distributions. We want
a generalization of these results for new 4-point schemes.

Now, suppose that f and p built on D, can be extended to IR in smooth
enough functions with f' = p. As n tends to oo, a Taylor expansion of f(5)
and p(z%) at the origin gives necessary conditions on the parameters. This is
to be connected to the reproducibility of polynomials. Like Dyn and Levin
in [3], we will say that the scheme is C" if, for any data {yi,y} }rez, there
exist two functions, f € C"(R) and p € C""!(R) such that f' = p and
f(k) = yk,p(k) = yj,. Dyn and Levin have proved that if the scheme is C,
then it reproduces polynomials of degree less or equal to r. More precisely, if
{Yk, V). } kem are two sequences such that there exists a polynomial P of degree
less than or equal to r with P(k) = yi, P'(k) = vy}, then f = P and p = P’
on D
Proposition 1. Assume that the schemeis C". Then the following conditions
are necessary:

forr =0,a; +by =1/2, forr =1, ay + 3by + 2¢2 + 2dy = 1,

forr =2, 2ay — ¢y —3d; =9/8, for r =3, 6by + ¢3 + 13dy = —1/4,

forr =4, —¢y +3dy =9/64, for r =5, —cy + 9dy = 9/32,

forr =6, a; = 243/512,b; = 13/512, ¢y = —81/512,d; = —3/512,

forr =7, az = 405/256,by = 5/256, ¢y = —81/256,dy = —1/256.

2.1. Convergence and Smoothness Analyses of HS41

We now study when the scheme is C'!. The necessary conditions given above
imply that a; + by =1/2 and ag + 3bs + 2¢5 +2dy = 1. Set
. p(5) = p(5+)

<2n[f(z—|—1) f(an)]_P(;;z);‘P(gn)>

With the help of a computer algebra system, we immediately get

7
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Proposition 2.

Uty = AU+ B UM + U

Unhl = AU, + B U + 0_1U,z g

with

j(a2‘|‘bz)
J( 2Cll—l- —|—201—|—2d1) 1_a2—2|-b2 )

b .
5 +do b
i w) i
J( Cll—l- +2d1)———72 J(—=2a1+1) = 2%

C ( (% + do) b2 )
T\ i 42d) 2+ L (20 -1) -2 )7

Theorem 3. If there exists a matrix norm || - || on R2*? such that

|45 + 1Bl + 11|l < 1,7 = +1, then the scheme is C*'.

Proof: The functions p and f are built on D.,. We want to extend them to
IR and prove that f' = p. We will do it on [0,1], and the extension to IR will
be obvious.

Set x = max(||A4;]| + || B;|| + ||Cjll,s = £1). Then for all n € IN and for
all 2 € {0,...,2" — 1}, ||UL|| < v1x", where the constant v; depends on the
initial data on [—3,3] N ZZ. Let v be a real number such that for any vector
VeR [[V]w < 72[IV].

Firstly, for n € IN, let p,, be the continuous piecewise linear function on

[0,1] defined by p,(i27") = p(i27"), i € {0,...,2"}. Then we have

vt = palloe = sup (2 + 11271 = S0+ 1)27") + p(i2 ")

< §(IIU§T11||oo + 1074 ]l oc)

1 7 n
< 572(||U§++11|| +HIUR) < 71yt

Hence we can deduce that p, is a Cauchy sequence in C([0,1]). Therefore it
has a continuous limit that we still call P since it is an extension.

Secondly, let us set ¢(x) )+ fo t)dt. o is in C'(R) with ' = p.
Let us prove that ¢ = f.

Given @ € Do, N[0,1] and € > 0, there exists n such that @ € D,, ; since
x € Dy, for all n' > n, we can choose n as large as we need. Since p is
uniformly continuous on [0, 1], for n large enough and ¢ € {0,...,2" — 1}, we
have

VEE i (4 127, [plt) — (p(i27) + p((i + 1)27))/2] < .
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Similarly we suppose n large enough to ensure v;y2x" < e.
Writing @ = k27" k € {0,...,2"}, we have

olw) — fla) = F(0) + / ()t — ()

(i+1)27"
=>4 / p(t)dt — [F((i +1)27") = F(i2~")]}

(i+1)2—" i —n ;9N
—Z/iz-n [p(t)—p(( ‘|‘1)2 2)‘|‘p( 2 )]dt

Y A R LR O R ()}

2n—|—1

For all 7 € {0,...,2"}, |U!]|ee < 72||UL]| < 7172x", and with the hy-
potheses on n, we can deduce that | p(a)— f(x) |< Ef:ol 2 e 27" Ef:ol e <
2e. As € can be chosen arbitrarily small, we obtain ¢ = f on D, N[0, 1].
Therefore ¢ is a continuous extension of f on [0,1], f € C'([0,1]) and f' = p.
O

Theorem 3 gives a sufficient condition for the operator U,, — U,41 to
be contractive. A weaker condition for the C''-convergence of the scheme can
be obtained when the operator U,, — U4, 1s a contraction for an integer
m > 1.

2.2. Examples

Before giving examples, we introduce a norm on R? by || X||s = |z1| + ]2
for X = (z1,22)7 where 8 is a real positive number. Then it is easy to prove
that for M = (m;;) € R?*?, | M|le = max)x,=1(]|MX|[s) = max(|mq1| +
6)ma1 |, % + |maz|). In some cases, it is convenient to know that we can
find a 8 > 0 to get | M|l < 1 if and only if |mi1| < 1,|maz| < 1 and

[maz| - [mar| < (1 —[ma1])(1 — |maz]).

Example 4. For HS21, we have by = d; = by = d; = 0. Adding the
conditions ay + by = 1/2 and ay 4+ 3by + 2¢3 4+ 2dy = 1, so that a; = 1/2 and
¢y = (1 —az)/2, we have

1 .
o 2 jas o 0 0 _ -
4 (j(i+2c1) 1—‘;—2)’ B, (0 0) € a=EL

The scheme is C'! if there exists a matrix norm || - || such that |4;]| < 1. For
example, sufficient conditions are 0 < ay < 4 and |az|- |1+ 8¢1| < 2 —|2 — az].
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Example 5. Assume that the necessary conditions to get a C” interpolant
are satisfied, i.e., ay = 243/512,by = 13/512,¢y = —81/512,dy = —3/512,
ay = 405/256, by = 5/256, ¢y = —81/256,ds = —1/256. Then, for j = +1,

1 ;205 ;3 v 5
A — 2 J 128 B — 512 J 256
7 5T 51 ’ 7 ;T3 ;13 5 >
J356 256 J512 — 1022 256 T 512

_]‘i ji
Ch:(.? 512, 256 5>‘
7 \Usizt1om Jase sz
For 6 = 4, a numerical evaluation gives || A4;||s+ || B;l|le +C;lle = 459/512, 5 =
+1. Therefore the scheme is C.

Example 6. Let a; and as be two real numbers. Set b = 1/2 — ay,
Cc1 :a1/2—3/8,d1 :a1/2—1/4,bz :2—a2,d2 == —62/2702 == (1—@2—3[)2—
2d,)/2 then the matrices A;, B;,Cj can be written

152 0 (2 — as)
R o J 2
J‘(o 0)’ B]‘(o j(1—2a1)— 5% )7

€= (8 j(2df(3 I)G—Z)“"%)

If the condition | — az + 4a1| + |4 — az — 4a1| < 1 is satisfied, then the scheme
is C''. To get the result, we can use the norm || - || with a 6 large enough.

§3. Convergence in a Distributional Sense of HS41

We consider convergence in a distributional sense of the Hermite scheme HS41.
Such convergence has already been shown by Derfel, Dyn and Levine [5] in the
context of non-Hermite subdivision schemes. There are two basic solutions of
our recursive system (1): the first one is the pair (fo, po) with data fo(k) =
Ok0,po(k) = 0,k € ZZ, and the second one is the pair (fi,p;) with data
fi(k) = 0,p1(k) = 6k0,k € ZZ. These two pairs are important because we
can express all the solutions (f,p) of (1) with linear combinations of their
translates. For all n € IN, 5 € 7Z,

(. @)

FG2Y = ) [Ffoli /2" = k) + p(R) (/2" = k)],

o0 (2)
p(3/2") = Y [f(k)po(i/2" = k) + p(k)pr(j /2" = F)):

k=—o0

Notice that all these sums are finite since the supports of f;,p;,2 = 0,1 are
contained in [—3, 3].

Now, applying relation (2) successively to the pair of functions
(F(2) = fo(2/2), p() = po(/2)/2) and then to the pair (fi(z/2), p1(¢/2)/2)
and evaluating the functions fy, po, f1,p1 at the half-integers by using (1), we
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obtain a system of functional equations for fy, pg, f1,p1 which can be written
in a matrix equation as

dlaf2)= 3 Mesta =) 3). (3)

keZ

Wmm¢@>:(ggggﬁg>mm

o 1 0 o aiq —CL2/2 o aq a2/2
MO_(O 1/2)’ Ml_(—cl c2/2>’ M‘1_<c1 c2/2 )

B by —by/2 (b b2 (0 0
M3_<—d1 d2/2>’ M_3_<d1 dr2) M=10 o)
otherwise.

3.1. Fourier Transform of HS41

Let us begin with a computation without proper justification. We will suppose
that the system (3) of functional equations is valid not only when z is a dyadic
number, but also when z is an arbitrary real number. We must suppose that
fo,po, f1,p1 have been extended by continuity on IR. Now, we compute the
Fourier transform f of a function f by f(&) = fjoooo f(z)e~**dz. Using this
Fourier operator on (3), we get

w6 = Ao (o 5)- (4

where A(¢) is given by

1 Z Me— i — %.—I- a1‘cos~f + 61‘ cos 3¢ ) %(1@2 sin € + by sin 3¢) ‘
2 keZ t(crsing +dysin3) 4 4 3(cz cos £ 4 dp cos 3E)

To study the matrix equation in (4), we now look at the matrix product

Po(€) = A(E/2)A(E/4) - A(E/27). (5)

More precisely, we look for conditions on the parameters to get the convergence
of the sequence of matrices P,(£). These conditions should be independent of
the real or complex value £&. The study of this sequence for complex values
of £ is motivated by a generalization of Paley-Wiener theorem proposed by

Schwartz [8].

Theorem 7. [Schwartz] Let F' be a continuous function on the real axis which
is the Fourier transform of a tempered distribution T. Then the support of
T is contained in [—C,C] if and only if F' may be extended on the complex
plane to an analytic entire function of exponential type < C.

We recall that an entire function F(z) is of exponential type < C if

% < C. To study the convergence of the matrix products

P, (&), we will also use Proposition 5.2 of Heil and Colella [6].

lim SUP|. | — oo
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Proposition 8. If lim[A(0)]" exists and is not trivial, then the sequence
P, (&) converges uniformly on compact sets of C to a continuous matrix-valued
function P({) whose restriction to the real line has at most polynomial growth
at infinity.

We are now ready for the main result.

Theorem 9. For a; + by = 1/2 and —% < ¢y +dy < %, for any complex
number £, the sequence of matrices P,({) defined in (5) converges, and the
convergence is uniform whenever ¢ lies in the disk |{] < R. As functions
of £, the four components of the limit matrix P(§) are entire functions of
exponential type < 3.

1 0

0 1
vious proposition, the sequence P, (&) converges on each compact set. As the
sequence P,(z) converges to a matrix P(z), and as the moduli of the com-
ponents of the matrices P,(z) are uniformly bounded whenever |z| < R, the
Lebesgue dominated convergence theorem and Cauchy formula give us the
proof that all the components of the matrix P(z) are analytic in z.

Finally, let us verify that each element of the matrix P(z) is an entire
function of exponential type. Firstly, there exists a real positive number C'
which depends on the parameters such that for all z € C, ||A(2)||e < Ce?lZl
Secondly, we know that there exists a real positive number M (depending on
the parameters again) such that for all z € C,|z| < 1,||P(2)||ecc < M.

Let z be a complex number such that 2" < |z| < 2"t
As P(z) = A(2/2)A(2/4) ... A(2/2™)P(z/2"T1), we obtain the bound

Proof: A(0) = ( ), so that with the hypotheses and the pre-

1P()llse < 1P(z/2" )]s [T I1AGz/29)]10e < M JICE2T) < DrCm e
k=1 k=1

log || P(

and thus limsup|.|_ |Z|Z)||°° < 3. Then the functions composing the

matrix P(z) are entire functions of exponential type < 3. O

The Schwartz version of the Paley-Wiener theorem implies the following
corollary.

Corollary 10. Set a;+b; = 1/2 and —% < cotdy < % Then each component
function of the limit matrix P(z) = lim P,(z) is the Fourier transform of a
distribution whose support is contained in the interval [—3, 3].

3.2. Schwartz Distributions Associated with the Scheme

We will connect the computation of Fourier transforms of the previous sub-
section with the limit matrix P(£). This link will come from a sequence of
Schwartz matrix distributions. We set

o _ L~ ((folm/2") polm/2")
DY <f1<m/2"> p1<m/2">> mf2
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where ¢, is the Dirac distribution at point h defined by 6,(¢) = ¢(h). Notice
that these sums are finite and that the distributions are compactly supported
since the supports of f;, p;,;2 = 0,1 are in [—3, 3].

Now, let us evaluate the Fourier transform of this matrix distribution:
T(")(f) = T(M(e7%%), Using the system of equations (3), we verify that a
simple induction links the sequence of Fourier transforms through the matrix

A(¢). Indeed,

Pl ey = 2 Z( fo(m/2") po(m/2"))>e—ism/2"+{

= W fl(m/2n+1) p1(m/2n+1

We substitute fo(m /271, po(m /27T, f1(m /271, pi(m/2"T1) by the right
member of the first, second, third, fourth equation of system (3), respectively,
with = m/2" in the last equation to obtain the recursion

T+ = a7 (). (©)
Since T(O)(f) = I, the identity matrix, we get
106 =P (g 0 )

()
The sequence of column vectors ( Al(}l)gg
21
the matrix P(¢). Now, Schwartz has noticed that the Fourier transform in
the space of tempered distributions is a linear continuous transformation and
that its inverse is equal to its conjugate ([8] p. 107 of Vol. 2). Therefore the

) converges to the first column of

sequences Tl(?), Tz(?) converge to the distributions Ty, T, respectively, which
are the components of the inverse Fourier transform applied to the first column
of the matrix P(&).

Theorem 11. For a; + by = 1/2 and —% < g +dy < %,
To(n),Tl(n) converge to the distributions Ty,Ty, respectively, which are the
components of the inverse Fourier transform applied to the first column of the

matrix P(£).

the sequences

Now, we can prove that the subdivision scheme is always convergent in the
space of distributions D'(IR) whenever ay + by = 1/2 and —% < cgtdy < %
In the following, we use Schwartz notation for the translation operator 7,
where h is a real number. Given a function ¢ in C§° and a distribution 7',

then m¢(x) = ¢(x — h) and 7,T(¢) = T(7h¢).

Theorem 12. Assume that ay + b; = 1/2 and —% < g+ dy < % If we
build the pair (f,p) by the subdivision scheme (1) from the data {yx, v} }rez.
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then the sequence of distributions F,, = -5 > °° Jf(m /2" )6y, j2n converges

2n m=—00

to the distribution F = >"72 _ [ys7—xTo + yp7—1T1].

Proof: Let ¢ be a function in C* with support in [-N,N]. Then
Fo(¢) = 5+ Zz_ non J(m/2")p(m/2™). We use relation (2) to get
N2m N+1
2"Fu(¢) = > D> lwefo(m/2" — k) +yifi(m/2" = k)]é(m/2")
m=—N2" k=—N-1
N+1 N2m
= > D luwhom/2Y) + yi fi(m /2] (m /2" + k)
k=—N—-1m=—N2"
N+1
=2" Y [T + " (ko).
k=—N-1
As n tends to infinity, the limit of the sequence F,(¢) is

(. @)

Z lyeT—kTo + v 7=k T1](¢). O

k=—c
Theorem 13. Fora;+b; =1/2 and —% < catdy < %, both sequences of dis-

tributions Tl(;), T(n) converge. They converge respectively to the derivatives

Ty, T of the dlstrlbutions Ty, Ty if and only if as + 3by + 2¢o + 2dy = 1.
Proof: Using the relations (5) and (6), we have

()-maonon

$laz sin(€/2") + by sin(3¢/2")] )
EH 5 conl6/27) + % con(36/2)

A(n 1) 1 (n 1)
(a2+352)§<§(n 1)&2) ‘|‘(2 +co + ds) (Tz(; 1)Eg>
+0(27")

=2"P,_1(&

+ O(n[max(=, = + ¢z + d2)]").

If |%—|—cz +dz| < 1 which is one of the hypotheses, then the right member of the
last vector equation tends to a column vector whose components are respec-

tively zf%fo(f) and zf%ﬂ(f) They are the two respective

limits of the sequences Tl(;)(f), Tl(;)(.f) These limits are iTpE, szl(f) if and

f (a2—|—362)/2

= 1. Using the inverse Fourier transform on each sequence
1/2—co—d> ’

only i
it is clear that Tl(;), Tz(;) converge to the distributions 7§, T, respectively. O

Let us conclude with a theorem whose proof is similar to the proof of
Theorem 12.
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Theorem 14. Suppose that ay +b; = 1/2, —% <eg+dy < %, and ag + 3by +
2¢y 4+ 2dy = 1. If we build the pair (f,p) by the subdivision scheme (1) from

the data {yi,y} }rez, then the sequence of distributions

(. @)

1 k13
Gn:2—n Z p(m /2" o jon

m=—oC

converges to the distribution G =%, [ye7—1 Ty + y. 7= T} ].
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