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Abstract. We derive two reformulations of the C1 Hermite subdivision scheme introduced by Merrien. One
where we separate computation of values and derivatives and one based of refinement of a control polygon. We show
that the latter leads to a subdivision matrix which is totally positive. Based on this we give algorithms for constructing
subdivision curves that preserve positivity, monotonicity, and convexity.
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1. Introduction. Subdivision is a technique for creating a smooth curve or surface out of a
sequence of successive refinements of polygons, or grids see [2]. Subdivision has found applications in
areas such as geometric design [7],[18], and in computer games and animation [5]. We consider here
the two point Hermite scheme, the HC1-algorithm, introduced in [13]. We start with values and
derivatives at the endpoint of an interval and then compute values and derivatives at the midpoint.
Repeating this on each subinterval we obtain in the limit a function with a certain smoothness. The
scheme depends on two parameters α and β and it has been shown that the limit function is C1 for
a range C of these parameters. For more references to Hermite subdivision see [6, 12, 14, 15].

The strong locality of the HC1-algorithm was used in [15] to construct subdivision curves with
shape constraints like positivity, monotonicity, and convexity. A notion of control points, control
coefficients and a Bernstein basis for two subfamilies of the HC1-interpolant were introduced in [17].

In this paper we continue the study of subdivision with shape constraints initiated in [15, 17].
Before detailing our results let us first describe the shape preserving subdivision process and give an
example. Suppose we have values y1, . . . , yn and derivatives y′1, . . . , y

′
n at some abscissae t1 < t2 <

· · · < tn. With each subinterval [ti, ti+1] we associate parameters (αi, βi) ∈ C chosen so that the
HC1-interpolant using data (yi, y

′
i, yi+1, y

′
i+1) has the required shape on [ti, ti+1]. We then obtain a

C1-function on [t1, tn]. As an illustration consider the function in Figure 1.1.
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Fig. 1.1. A given function.

This function is defined on the interval [0, 4]. It is positive on [0, 1], strictly increasing on [1, 2],
constant on [2, 3] and concave on [3, 4]. Suppose we want to use subdivision to construct a C1-
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approximation to this function with the same shape characteristics and that all we know about the
function are the function values y1, . . . , yn at some points t1 < · · · < tn. We can achieve this with
the HC1-algorithm using only crude estimates for the derivatives y′1, . . . , y

′
n as long as the transition

points 1, 2, 3 are among the abscissae and the chosen derivatives are consistent with the required
shapes. See Section 6 for details. For classical curve based shape preserving algorithms we refer to
[8, 10, 11] and references therein.

If we compare HC1 to the Bezier or spline curves, we also introduce the control polygon. The
originality of this family of interpolants is that monotonicity or convexity of the control polygon and
of the function are equivalent (See Theorems 5.3 and 5.6). We observe that this only true in one
direction for Bezier or spline curves.

Our paper can be detailed as follows. In Section 2, we recall the HC1-algorithm and some
properties which were proved in [15]. We give a new formulation of the HC1-algorithm were we
separate the computation of function values and derivatives. This formulation is useful for proving
shape preserving properties and with the aid of this formulation we simplify the proofs of the
main results in [15]. The new formulation also shows why the one parameter family given by
α = β/(4(1 − β)) and β ∈ [−1, 0) considered in [15, 17] really is an extension of the quadratic
spline case. We will refer to this family as the EQS-case of the HC1-algorithm. We also give a new
domain C for C1-convergence of the algorithm. In Section 3 we use the control points introduced
in [17] to reformulate the HC1 algorithm as a stationary subdivision algorithm called SC1. The
control points depend on a third parameter λ ≥ 2 and we show convergence of the SC1-algorithm
for (α, β) ∈ C and λ ≥ 2. Starting in Section 4, we restrict our attention to the EQS-case. By
formulating the SC1-algorithm as a corner cutting scheme we show that the subdivision matrix S is
totally positive. We show this for an extended range of β and λ and also prove the total positivity
of the HC1-Bernstein basis. With this last property, the interpolant inherits shape properties of the
control polygon such as nonnegativity, monotonicity or convexity. In Section 5, we give algorithms
for interpolation with any of the previous shape constraints. An example based on Figure 1.1 is
given in Section 6.

We also point out that Proposition 2.1 on one hand and Proposition 3.1 with Theorem 3.4
on the other hand show that we obtain two Lagrange subdivision schemes from the HC1 Hermite
subdivision scheme.

2. The HC1 Algorithm . We recall the univariate version of the Hermite subdivision scheme
for C1 interpolation, given by Merrien [13] which we call here HC1. We start with values (f(a), p(a))
and (f(b), p(b)) of a function f and of its first derivative p = f ′ at the endpoints a, b of a bounded
interval I := [a, b] of R. To build f and p on I, we proceed recursively. At step n (n ≥ 0), let us
denote by Pn the regular partition of I in 2n subintervals and let us write hn := (b− a)/2n. If c and
d are two consecutive points of Pn, then we compute f and p at the midpoint (c + d)/2 according
to the following scheme, which depends on two parameters α and β

f(
c+ d

2
) :=

f(d) + f(c)
2

+ αhn[p(d) − p(c)],

p(
c+ d

2
) :=(1 − β)

f(d) − f(c)
hn

+ β
p(d) + p(c)

2
.

(2.1)

By applying these formulae on ever finer partitions, we define f and p on P = ∪Pn which is a
dense subset of I. We say that the scheme is C1-convergent if, for any initial data, f and p can be
extended from P to continuous functions on I with p = f ′. We call f defined either on I or on P
the HC1-interpolant to the data.

The HC1-algorithm can also be formulated as follows. We start with Hermite data f0, p0, f1,
p1 at the endpoints of a finite interval [a, b] and set f0

0 = f0, p0
0 = p0, f0

1 = f1, and p0
1 = p1. For
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n = 0, 1, 2, . . ., hn = 2−n(b− a), and k = 0, 1, . . . , 2n − 1

fn+1
2k := fn

k , fn+1
2k+1 :=

fn
k+1 + fn

k

2
+ αhn

(
pn

k+1 − pn
k

)
, (2.2)

pn+1
2k := pn

k , pn+1
2k+1 :=(1 − β)

fn
k+1 − fn

k

hn
+ β

pn
k+1 + pn

k

2
, (2.3)

and fn+1
2n+1 := fn

2n , pn+1
2n+1 := pn

2n . If the scheme is C1-convergent with limit functions f and p then

f(tnk ) = fn
k , f

′(tnk ) = p(tnk ) = pn
k , t

n
k := a+ khn, k = 0, 1, . . . , 2n. (2.4)

2.1. The Vector Space of HC1-interpolants. To each choice of (α, β) there is a vector
space

V C1
α,β(P) := {f : P → R : f, p computed by (2.2) − (2.4)}

of HC1-interpolants. If the scheme is C1-convergent we define

V C1
α,β(I) := {f : I → R : f |P ∈ V C1

α,β(P)}.

The HC1-Hermite basis functions {φ0, ψ0, φ1, ψ1} are defined by taking as initial data the four
unit vectors ej = (δi,j)4i=1, respectively. They are always defined on P and the HC1-interpolant
corresponding to initial data (f0, p0, f1, p1) can be written f = f0φ0 + p0ψ0 + f1φ1 + p1ψ1. Since
the Hermite basis functions are clearly linearly independent on P they form a basis for V C1

α,β(P).
Thus V C1

α,β(P) and V C1
α,β(I) are vector spaces of dimension 4.

Let us denote the HC1-interpolant to initial data sampled from a function g by f = Hg. By
induction it is easy to see that for any (α, β) we have g = Hg for all polynomials g of degree at most
one, while g = Hg for all quadratic polynomials if and only if α = −1/8. We also have g = Hg for
all cubic polynomials if and only if α = −1/8 and β = −1/2 and it can be shown that xk �= Hxk for
any integer k ≥ 4. The fact that the scheme reproduces polynomials up to a certain degree can be
used to give error bounds, see [15, 5]. Assume (α, β) are chosen so that the scheme is C1-convergent.
Then there is a constant C(α, β) such that for all intervals I = [a, b] and all g ∈ Ck(I) we have

‖g −Hg‖L∞(I) ≤ C(α, β)hk‖g(k)‖L∞(I), (2.5)

where h := b− a and k = 2 for most choices of α and β.
Notice some important choices of (α, β):
1. If α = −1/8, β = −1/2, then f is the cubic polynomial known as the Hermite cubic

interpolant. For this choice of parameters (2.5) holds with k = 4 and C(α, β) = 1/384.
2. If α = −1/8, β = −1, then f is the Hermite quadratic interpolant, i.e. the quadratic C1

spline interpolant with one knot at the midpoint of the initial interval. In this case (2.5)
holds with k = 3 and C(α, β) = 1/96, see [15].

3. The EQS-case α = β
4(1−β) with β ∈ [−1, 0) is a one parameter extension of the quadratic

spline case. It was introduced and studied in [15], see also [17]. In this case (2.5) only holds
with k = 2 and C(α, β) ≤ 1/48 unless β = −1, but as we will see this scheme has important
shape preserving properties.

2.2. Direct computation of the function or the derivative. We can reformulate (2.2),(2.3)
so that only values of p are involved and similarly for f .

Proposition 2.1. For α, β ∈ R, the function f and the derivative p of the HC1-interpolant
satisfy the following relations:
For n = 1, 2, . . .
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and i = 0, 1, . . . , 2n−1 − 1,⎡
⎢⎢⎣
pn+1
4i

pn+1
4i+1

pn+1
4i+2

pn+1
4i+3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0
µ 1 + β/2 −ν
0 1 0
−ν 1 + β/2 µ

⎤
⎥⎥⎦

⎡
⎣ pn

2i

pn
2i+1

pn
2i+2,

⎤
⎦ . (2.6)

For n ≥ 2 and i = 0, 1, . . . 2n−2 − 1⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fn+1
8i

fn+1
8i+1

fn+1
8i+2

fn+1
8i+3

fn+1
8i+4

fn+1
8i+5

fn+1
8i+6

fn+1
8i+7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0 0
1 + µ 2(2 − µ) µ+ ν − 1 −2ν ν

0 4 0 0 0
−µ 2(1 + µ) 2 − µ− ν 2ν −ν
0 0 4 0 0
−ν 2ν 2 − µ− ν 2(1 + µ) −µ
0 0 0 4 0
ν −2ν µ+ ν − 1 2(2 − µ) 1 + µ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

fn
4i

fn
4i+1

fn
4i+2

fn
4i+3

fn
4i+4,

⎤
⎥⎥⎥⎥⎦ (2.7)

where µ := −2α(1 − β) and ν = µ+ β/2.

Proof. The result is clear for equations corresponding to even subscripts of p and f since the
scheme is interpolating. Consider therefore the odd subscript equations. We will use the notation
∆pn

k = pn
k+1 − pn

k , ∆fn
k = fn

k+1 − fn
k and ∆2fn

k = ∆(∆fn
k ) = fn

k+2 − 2fn
k+1 + fn

k .
Let us start by proving (2.6). Using (2.3) with k = 2i and k = 2i+ 1

pn+1
4i+1 = (1 − β)

∆fn
2i

hn
+
β

2
(
pn
2i+1 + pn

2i

)
pn+1
4i+3 = (1 − β)

∆fn
2i+1

hn
+
β

2
(
pn
2i+2 + pn

2i+1

)
.

(2.8)

From (2.2) we obtain

∆fn
2i

hn
=

∆fn−1
i

hn−1
+ 2α∆pn−1

i

∆fn
2i+1

hn
=

∆fn−1
i

hn−1
− 2α∆pn−1

i ,

(2.9)

The f difference on the right can be eliminated by a reordering of (2.3) with k = i and n→ n− 1

(1 − β)
∆fn−1

i

hn−1
= pn

2i+1 −
β

2
(
pn−1

i+1 + pn−1
i

)
. (2.10)

Combining (2.8)-(2.10), we find

pn+1
4i+1 = pn

2i+1 +
β

2
(
pn
2i+1 − pn−1

i+1

) − µ∆pn−1
i

pn+1
4i+3 = pn

2i+1 +
β

2
(
pn
2i+1 − pn−1

i

)
+ µ∆pn−1

i

and we obtain (2.6).
In terms of differences (2.6) takes the form

∆pn
4i = (1 − µ)∆pn−1

2i − ν∆pn−1
2i+1

∆pn
4i+1 = µ∆pn−1

2i + ν∆pn−1
2i+1

∆pn
4i+2 = ν∆pn−1

2i + µ∆pn−1
2i+1

∆pn
4i+3 = −ν∆pn−1

2i + (1 − µ)∆pn−1
2i+1.

(2.11)



5

Notice that an equivalent formulation of (2.2) is

∆2fn+1
2k = −2αhn∆pn

k

and (2.11) can be written

2∆2fn+1
8i = (1 − µ)∆2fn

4i − ν∆2fn
4i+2

2∆2fn+1
8i+2 = µ∆2fn

4i + ν∆2fn
4i+2

2∆2fn+1
8i+4 = ν∆2fn

4i + µ∆2fn
4i+2

2∆2fn+1
8i+6 = −ν∆2fn

4i + (1 − µ)∆2fn
4i+2.

(2.12)

It remains to extract the values fn+1
8i+j , j = 1, 3, 5, 7 from the previous formulae to obtain (2.7).

From (2.6) it follows that the new p-values on level n + 1 (n ≥ 1) can be formed by an affine
combination of three p values on the previous level n. This can especially be used to simplify the
proofs of two results in [15] on monotonicity and convexity of the HC1-interpolant.

For monotonicity the HC1-algorithm is applied in [15, 3] to test data (f0, p0, f1, p1) = (0, x, 1, y)
computing the corresponding HC1-interpolant f and its derivative p. For fixed (α, β) the authors
determine the set of slopes (x, y) giving p ≥ 0. Theorem 11 in [15] states that if −1 < β < 0 and
0 > α ≥ β/(4(1 − β)) then

M(α, β) := {(x, y) ∈ R
2
+ : p ≥ 0} = {(x, y) ∈ R

2
+ : x+ y ≤ γ} =: T (γ),

where γ := 2(β−1)
β and R

2
+ = {(x, y) ∈ R : x > 0, y > 0}. Note that any point in R

2
+ belongs to T (γ)

for some β < 0. Thus we can obtain an increasing interpolant for any nonnegative initial slopes x, y
by choosing β suitably close to zero. For arbitrary initial data (f0, p0, f1, p1) on [a, b] one can use
the change of variables g(t) :=

(
f(a+ t(b − a)) − f0)

)
/(f1 − f0) to show that the HC1-interpolant

f is increasing if and only if
(
p0/∆, p1/∆

) ∈M(α, β), where ∆ := (f1 − f0)/(b− a).
The proof of Theorem 11 follows immediately from (2.6). Indeed for the assumed range of (α, β)

the elements in the matrix in (2.6) are all nonnegative. Thus if p is nonnegative on level n − 1 it
is nonnegative on level n. Moreover, if (x, y) ∈ T (γ) then p((a + b)/2) = 1 − β + β(x + y)/2 ≥
1 − β + β

2
2
β (β − 1) = 0 and the theorem follows. In fact the theorem holds for −2 ≤ β < 0 as long

as we have C1-convergence of the HC1-interpolant. See the next subsection for convergence results.
For convexity the HC1-algorithm is applied to the test data (f0, p0, f1, p1) = (0,−x, 0, y) with

(x, y) ∈ R
2
+. For fixed (α, β) the set of slopes (x, y) giving an increasing p, is determined. Theorem

18 in [15] states that if −1 ≤ β < 0 and γ := (β − 2)/β then

C(α, β) := {(x, y) ∈ R
2
+ : p is increasing} = {(x, y) ∈ R

2
+ : x/γ ≤ y ≤ xγ} =: C∗(γ)

if and only if α = β/(4(1 − β)). Since any point in R
2
+ belongs to C∗(γ) for β sufficiently close

to zero, this result implies that we can obtain a convex HC1-interpolant in the EQS-case by using
any nonnegative values (x, y) as initial data. For arbitrary initial data (f0, p0, f1, p1) on [a, b] with
h = b − a one can for convexity use the change of variables g(t) := f(a + th) − (1 − t)f0 − tf1 to
show that the HC1-interpolant f is convex if and only if h ∗ (

p1 − ∆,∆ − p0

) ∈ C(α, β), where as
before ∆ := (f1 − f0)/h.

To prove Theorem 18 we use (2.11). For the given value of α we have ν = 0 and moreover
0 ≤ µ ≤ 1. Thus p is increasing on level n if it is increasing on level n− 1. Since −x = β(γ − 1)x ≤
β(y−x)/2 = p((a+b)/2) ≤ β(y−γy)/2 = y, p is increasing on level 1 and the if part of the Theorem
follows. The only if part is easy, see [15, p. 293].

In the EQS-case we only need two of the three p-values on the right of (2.6). Moreover the
derivatives will be sampled from a piecewise linear curve.
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Corollary 2.2. In the EQS-case α = β
4(1−β) we have

pn+1
4i+1 = −β

2
pn
2i + (1 +

β

2
)pn

2i+1,

pn+1
4i+3 = (1 +

β

2
)pn

2i+1 −
β

2
pn
2i+2.

(2.13)

and

4fn+1
8i+1 =(1 − β

2
)fn

4i + (4 + β)fn
4i+1 − (1 +

β

2
)fn

4i+2

4fn+1
8i+3 =

β

2
fn
4i + (2 − β)fn

4i+1 + (2 +
β

2
)fn

4i+2

4fn+1
8i+5 =(2 +

β

2
)fn

4i+2 + (2 − β)fn
4i+3 +

β

2
fn
4i+4

4fn+1
8i+7 = − (1 +

β

2
)fn

4i+2 + (4 + β)fn
4i+3 + (1 − β

2
)fn

4i+4

(2.14)

If in addition β ∈ (−2, 0) then there exist

a = τn
0 < τn

1 < · · · < τn
2n = b, (2.15)

with τn
2n−1 = a+b

2 for n ≥ 1. such that

pn
i = L(τn

i ), i = 0, 1, . . . , 2n, n = 0, 1, . . . , (2.16)

where L is the piecewise linear curve connecting the three points (a, p(a)), (a+b
2 , p(a+b

2 )), (b, p(b)).
Proof. If α = β

4(1−β) then µ = −β/2 and (2.13) follows from (2.6). Similarly, we obtain (2.14).
We claim that (2.16) holds with

τn+1
4i = τn

2i, τn+1
4i+1 = −β

2
τn
2i + (1 +

β

2
)τn

2i+1,

τn+1
4i+2 = τn

2i+1, τn+1
4i+3 = −β

2
τn
2i+2 + (1 +

β

2
)τn

2i+1.

(2.17)

Since pn
0 = p(a) and pn

2n = p(b), we have τn
0 = a and τn

2n = b for all n ≥ 0. Moreover, since
pn
2n−1 = p(a+b

2 ), we see that τn
2n−1 = a+b

2 for all n ≥ 1. Thus (2.15) will follow from (2.17) since
the latter involves convex combinations for β ∈ (−2, 0). (2.17) follows from (2.13) by induction.
Suppose (2.16) holds for some n. Since L is linear on the actual segment we obtain

pn+1
4i+1 = −β

2
L(τn

2i) + (1 +
β

2
)L(τn

2i+1) = L(τn+1
4i+1),

where τn+1
4i+1 is given by (2.17). The proof of the other τ -relation is similar.

2.3. C1-convergence. To study convergence we observe that it is enough to consider the
interval [0, 1]. Indeed, if I := [a, b] and h := b− a, defining the initial data g(u) = f(a+hu), g′(u) =
hf ′(a+ hu), for u ∈ {0, 1}, the construction of f on [a, b] or g on [0, 1] by (2.1) are equivalent and
at step n, g(u) = f(a+ uh) and g′(u) = hf ′(a+ hu) for u ∈ {0, 1/2n, . . . , 
/2n, . . . , 1}.

In [14] it was shown that if there exist positive constants c, ρ with ρ < 1 such that for each
integer n ≥ 0 we have |∆pn

i | ≤ cρn for i = 0, 1, . . . , 2n − 1, where

∆pn
i := p

( i+ 1
2n

) − p
( i

2n

)
, i = 0, 1, . . . , 2n − 1, (2.18)
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then p has a unique continuous extension to I. Moreover, there is a positive constant c1 such that
for all (x, y) ∈ [0, 1]2

|p(x) − p(y)| ≤ c1|x− y|− log2 ρ,

i.e. p is Hölder continuous with exponent − log2 ρ.
Suppose p is continuous and lim

n→∞ max
0≤i<2n−1

|∆(f, p)n
i | = 0, where

∆(f, p)n
i := 2n∆fn

i − σpn
i , σpn

i :=
1
2
(
p
( i+ 1

2n

)
+ p

( i

2n

))
, (2.19)

and ∆fn
i = f

(
i+1
2n

)−f(
i

2n

)
. Then ([14]) f has a unique continuous extension to I := [0, 1]. Moreover

f ∈ C1([0, 1]) with f ′ = p. From this discussion we have the following lemma.
Lemma 2.3. Let Un

i := [∆pn
i ,∆(f, p)n

i ]T for i = 0, 1, . . . , 2n − 1 and n = 0, 1, 2, . . .. If we can
find a vector norm ‖·‖ on R

2 and positive constants c, ρ with ρ < 1 such that

‖Un
i ‖ ≤ cρn, i = 0, 1, . . . , 2n − 1 and n = 0, 1, . . .

then the HC1-algorithm is C1-convergent and f ′ = p is Hölder continuous with exponent − log2 ρ.

We can now show
Proposition 2.4. Algorithm HC1 is C1-convergent for (α, β) ∈ [−1/8, 0)× [−2, 1).
Proof. An immediate evaluation gives

Un+1
2i = Λ1U

n
i and Un+1

2i+1 = Λ−1U
n
i for i = 0, 1, . . . , 2n, n = 0, 1, . . . ,

where

Λε =

⎡
⎢⎣

1
2

ε(1 − β)

ε
8α+ 1

4
1 + β

2

⎤
⎥⎦ , ε = ±1. (2.20)

Note that the off-diagonal elements of Λε have the same sign for α ≥ −1/8 and β ≤ 1. We
define a vector norm by ‖v‖ := ‖P−1v‖2, where ‖ · ‖2 is the usual Euclidian vector norm and

P :=
[
2
√

1 − β 0
0

√
8α+ 1

]
. Then P−1ΛεP is symmetric and the corresponding matrix operator

norm is given by ‖Λε‖ := ‖P−1ΛεP‖2, where ‖A‖2 :=
√
ρ(ATA) is the spectral norm of a matrix

A. The eigenvalues of Λε or of P−1ΛεP are

λ1 =
1
4
(
2 + β +

√
(2 − β)2 + 32α(1 − β)

)
, λ2 =

1
4
(
2 + β −

√
(2 − β)2 + 32α(1 − β)

)
Since P−1ΛεP is symmetric the eigenvalues are real with λ2 < λ1. Now for β ∈ [−2, 1) and
α ∈ [−1/8, 0) we find λ1 < (2+β+

√
(2 − β)2)/4 = 1 and λ2 > (2+β−√

(2 − β)2)/4 = β/2 ≥ −1.
Thus ρ := ‖Λε‖ = max{|λ1|, |λ2|} < 1 for ε = ±1 and we have shown that max{‖Un+1

2i ‖, ‖Un+1
2i+1‖} ≤

ρ‖Un
i ‖ so that ‖Un

i ‖ ≤ ρn‖U0
0‖ for i = 0, 1, . . . , 2n − 1 and n = 0, 1, 2, · · · . The C1-convergence for

(α, β) ∈ [−1/8, 0)× [−2, 1) now follows from Lemma 2.3

By Proposition 2.4, the HC1-algorithm converges for β ∈ [−1, 0) if α = β
4(1−β) . We can now

extend this result.
Proposition 2.5. If α = β

4(1−β) then the HC1-algorithm is C1-convergent for β ∈ (−2, 0).

Proof. For ε = ±1 the matrices Λε in (2.20) take the form : Λε =
( 1

2 ε(1 − β)
ε β+1

4(1−β)
1+β

2

)
.
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Now, for any positive real number θ, we define the norm ‖·‖θ on R
2 by ‖(x, y)‖θ = |x| + θ|y|.

It is easy to prove that for any matrix M = (mij) ∈ R
2×2, the corresponding matrix operator

norm is given by ‖M‖θ := max(|m11| + θ|m21|, |m12|/θ + |m22|). Choosing θ = 2(1 − β) we find
‖Λ1‖θ = ‖Λ−1‖θ = 1/2(1 + |1 + β|), which is stricly less than one for −2 < β < 0. Lemma 2.3 now
gives the convergence.

We define the convergence region C by

C :=
{
(α, β) : the scheme HC1 is C1 - convergent

}
. (2.21)

We have shown that [−1/8, 0)× [−2, 1) ⊂ C and also that {( β
4(1−β) , β) : −2 < β < 0} ⊂ C.

The function f ′ = p is Hölder continuous with exponent − log2 ρ. In the case where α = β
4(1−β)

we have ‖Λ1‖θ = ‖Λ−1‖θ = ρ = ρ(β) = 1/2(1 + |1 + β|) which is piecewise linear with a minimum
for β = −1 and we obtain the best regularity of the interpolant for β = −1 when f is a quadratic
spline.

To illustrate the smoothness properties of a HC1-interpolant we show the Hermite basis with
β = −3/5 and α = β

4(1−β) = −3/32 in Figure 2.1. The spectral radius of the matrices Λε is
7/10 and hence the derivatives of the Hermite basis functions are Hölder continuous with exponent
ρ = − log2(7/10) ≈ 0.5146.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 2.1. Hermite basis and derivatives, corresponding to α = −3/32 and β = −3/5.

Remark: The data f(a), p(a), f(b), p(b) can either have real values or vector values in R
s, s ≥ 2.

In this second case, we look for vector continuous functions f and p with f ′ = p from I = [a, b] to
R

s. The C1-convergence is guaranteed for all (α, β) in the convergence region C since it suffices to
study the convergence independently for each component of f and p.

3. Control Polygons and Subdivision Algorithm.

3.1. Control Coefficients and Control Polygons. Suppose we apply the subdivision scheme
HC1 to some real valued data f(a), p(a), f(b), p(b). In order to obtain a geometric formulation of
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the scheme we define control coefficients relative to the interval [a, b] by

a0 = f(a), a1 = f(a) +
h

λ
p(a), a2 = f(b) − h

λ
p(b), a3 = f(b), (3.1)

where h := b− a and λ ≥ 2 is a real number to be chosen. We define the control points (A0, A1, A2,
A3) on [a, b] by

A0 = (a, a0), A1 = (a+
h

λ
, a1), A2 = (b− h

λ
, a2), A3 = (b, a3), (3.2)

and the control polygon {A0, A1, A2, A3} on [a, b] by connecting the four control points by straight
line segments. If f is the HC1-interpolant then the parametric curve (x, f(x)) with x ∈ [a, b] passes
through A0 with tangent directions A1 −A0 and A3 with tangent direction A3 −A2. See Figure 3.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

A
0
 

A
1
 

A
2
 

A
3
 

Fig. 3.1. A HC1-interpolant and its control polygon, β = −3/5, α = −3/32, λ = 16/3.

We can also apply the subdivision scheme HC1 to vector valued data f0, p0, f1, p1 in R
s for

some s ≥ 2. We pick an interval [a, b] and use the HC1-algorithm on each component of f and
p. To obtain a geometric formulation of this process we define control coefficients relative to [a, b]
by (3.1) and we define the control points to be the same as the control coefficients. The computed
curve interpolates the first and last control coefficient and its tangent direction at a0 is a1 − a0, and
at a3 the tangent direction is a3 − a2.

Note that if 4 points a0, a1, a2, a3 in R
s for s ≥ 1 are given we can think of these as control

coefficients of a HC1-interpolant on some finite interval [a, b] and apply the HC1 algorithm to the
data given by

f(a) := a0, p(a) :=
λ

h

(
a1 − a0

)
, f(b) := a3, p(b) :=

λ

h

(
a3 − a2

)
, (3.3)

where h := b− a. We now derive a parameter independent formulation of this scheme. In particular
suppose (a0, a1, a2, a3) are points in R

s for some s ≥ 1 which are distinct if s ≥ 2 and let [a, b] be
any finite interval.

Using (3.1) and (3.3) we can compute new control coefficients (ā0, ā1, ā2, ā3) for the interval
I1 and new control coefficients (ā3, ā4, ā5, ā6) for I2, and then join them into control coefficients
(ā0, ā1, ā2, ā3, ā4, ā5, ā6) on [a, b]. In the following geometric formulation of the subdivision scheme
we do this computation directly without picking an underlying interval [a, b]. The proposition is a
generalization of [17, Theorem 10]:
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Proposition 3.1. Suppose ai ∈ R
s for i = 0, 1, 2, 3 and some s ≥ 1. After one subdivision

of the control coefficients (a0, a1, a2, a3) we obtain new control coefficients (ā0, ā1, ā2, ā3, ā4, ā5, ā6)
given by ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ā0

ā1

ā2

ā3

ā4

ā5

ā6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= S

⎡
⎢⎢⎣
a0

a1

a2

a3

⎤
⎥⎥⎦ :=

1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0
2 2 0 0
γ v − β v + β δ

2 − v v v 2 − v
δ v + β v − β γ
0 0 2 2
0 0 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
a0

a1

a2

a3

⎤
⎥⎥⎦ , (3.4)

where

v = −4αλ
γ = 2 − v + (2 + β(λ − 2))/λ
δ = 2 − v − (2 + β(λ − 2))/λ.

(3.5)

Moreover,

ā3 =
1
2
(ā2 + ā4). (3.6)

Proof. Pick any interval [a, b] and let h := b− a. By (3.1)

ā0 = f(a), ā1 = f(a) +
h

2λ
p(a), ā2 = f(

a+ b

2
) − h

2λ
p(
a+ b

2
), ā3 = f(

a+ b

2
),

ā6 = f(b), ā5 = f(b) − h

2λ
p(b), ā4 = f(

a+ b

2
) +

h

2λ
p(
a+ b

2
).

From (2.1) and (3.3) we obtain on an interval [a, b] the inverse relations

f(a) = a0, p(a) =
λ

h
(a1 − a0)

f(b) = a3, p(b) =
λ

h
(a3 − a2)

f(
a+ b

2
) =

a0 + a3

2
− v

4
(a3 − a2 − a1 + a0)

h

2λ
p(
a+ b

2
) =

1 − β

2λ
(a3 − a0) +

β

4
(a3 − a2 + a1 − a0)

=
2 + β(λ − 2)

λ
(a3 − a0) +

β

4
(a1 − a2).

(3.7)

But then we see that (ā0, ā1, ā2, ā3, ā4, ā5, ā6)T = S(a0, . . . , a3)T , where S is the matrix in equation
(3.4). Since the sum of rows three and five in the matrix S equals twice row four the relation (3.6)
follows.

For s ≥ 2 the control coefficients and control points are the same and the proposition also gives
rules for subdividing the control polygon. The following corollary holds in general.

Corollary 3.2. Suppose (a0, a1, a2, a3) ∈ R
s for some s ≥ 1. After one subdivision of the cor-

responding control polygon {A0, A1, A2, A3} we obtain a new control polygon {Ā0, Ā1, Ā2, Ā3, Ā4, Ā5, Ā6}
given by

[
Ā0 Ā1 Ā2 Ā3 Ā4 Ā5 Ā6

]T = S
[
A0 A1 A2 A3

]T (3.8)
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where S is given by (3.4). Moreover

Ā3 =
1
2
(Ā2 + Ā4), (3.9)

which means that these control points always lie on a straight line.
Proof. This has already been shown for s ≥ 2 and for the control coefficients for s = 1. For the

control point abscissas we obtain the relation (a, a+h/(2λ), ā−h/(2λ), ā, ā+h/(2λ), b−h/(2λ), d)T =
S(a, a+ h/λ, b− h/λ, d)T , where ā = (a+ b)/2, since the scheme HC1 reproduces linear functions.
Thus (3.8) and (3.9) also holds for s = 1.

3.2. A Stationary Subdivision Algorithm. By applying (3.4), we can reformulate the Her-
mite subdivision scheme HC1 as a stationary subdivision scheme working on points in R

s.
Starting with 4 points a0, a1, a2, a3 in R

s, s ≥ 1, (α, β) in the convergence region C, and λ ≥ 2,
we define Algorithm SC1 as follows.

At step n = 0, we set a0
0 = a0, a

0
1 = a1, a

0
2 = a2, a

0
3 = a3.

At step n+ 1, n ≥ 0, we define

⎡
⎢⎢⎢⎢⎢⎢⎣

an+1
6i

an+1
6i+1

an+1
6i+2

an+1
6i+3

an+1
6i+4

an+1
6i+5

⎤
⎥⎥⎥⎥⎥⎥⎦

=
1
4

⎡
⎢⎢⎢⎢⎢⎢⎣

4 0 0 0
2 2 0 0
γ v − β v + β δ

2 − v v v 2 − v
δ v + β v − β γ
0 0 2 2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
an
3i

an
3i+1

an
3i+2

an
3i+3

⎤
⎥⎥⎦ , i = 0, 1, . . . 2n − 1 (3.10)

and an+1
3.2n+1 = an

3.2n . Here v, γ, δ are given by (3.5). The matrix (s�,k)�=0,...,5,k=0,...,3 in (3.10) is
formed from the first 6 rows of S given by (3.4).

Lemma 3.3. For all n ≥ 1 and for all i = 1, . . . , 2n − 1, we have

an+1
6i = an

3i, i = 1, . . . , 2n−1

an+1
6i+1 − an+1

6i =
1
2
(
an
3i+1 − an

3i

)
, i = 1, . . . , 2n−1 − 1

an
3i+1 + an

3i−1 = 2an
3i, i = 1, . . . , 2n − 1

(3.11)

Proof. The first two equations follow immediately from (3.10). As in the proof of (3.6) it is
clear that

an+1
6i+2 + an+1

6i+4 = 2an+1
6i+3, i = 0, . . . , 2n − 1, n = 0, 1, . . . ,

and in particular a1
2 + a1

4 = 2a1
3. By (3.11) and induction on n

an+1
6i+1 + an+1

6i−1 =
1
2
(an

3i + an
3i+1) +

1
2
(an

3i−1 + an
3i) = 2an

3i = 2an+1
6i .

If we define a0
i for i < 0 and i > 3 in any way, the subdivision scheme can be written an+1

� =∑
k∈Z

σ�,ka
n
k , 
 ∈ Z where σ6i+�,3i+k = s�,k for i ∈ Z, 
 = 0, . . . , 5, k = 0, . . . , 3 and σi,j = 0

otherwise. With the definitions recalled in [3], the scheme is local since σ�,k = 0 for |
 − 2k| > 4.
Since

∑
k∈Z

σ�,k = 1, it is affine but it is not interpolating in a classical sense since we generally
have an+1

6i+2 �= an
3i+1.
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3.3. Convergence of SC1. The convergence of the subdivision schemes are usually established
by studying the difference sequence. Alternatively convergence follows since SC1 was derived from
HC1. Here are the details.

Theorem 3.4. Let s ≥ 1 and a0, a1, a2, a3 be 4 points in R
s. Suppose λ ≥ 2 and that (α, β)

is in the convergence region C given by (2.21). We build the sequence of points { an
i }n∈N,i=0,...,3.2n

by (3.10). Choose any interval I := [a, b] with h := b − a > 0 and define tni := a + ihn, where
hn := h2−n for n ∈ N and i = 0, . . . , 2n. Then, there exists a C1 function f : I → R

s such that for
all n ∈ N:

an
3i = f(tni ), i = 0, . . . , 2n,

an
3i+1 − an

3i =
hn

λ
f ′(tni ), i = 0, . . . , 2n − 1,

an
3i − an

3i−1 =
hn

λ
f ′(tni ), i = 1, . . . , 2n.

For s ≥ 2, let An
i = an

i , i = 0, 1, . . . , 3 × 2n and for s = 1, let An
3i = (tni , a

n
3i),A

n
3i+1 =

(tni + hn

λ , a
n
3i+1), A

n
3i+2 = (tni+1 − hn

λ , a
n
3i+2), i = 0, 1, . . . , 2n − 1, and An

3×2n = (b, an
3×2n).

Then the sequence of polygons {An
0 , . . . , A

n
3×2n} converges to the curve {f(t), t ∈ I}.

Proof. We will show that the scheme SC1 generates sequences {fn} and {pn} of piecewise linear
vector functions which interpolate values and derivatives at the points of Pn = {tn0 , . . . , tn2n}.

We define fn and pn to be linear on [tni , t
n
i+1], i = 0, . . . , 2n − 1, and to interpolate the following

values

fn(tni ) = an
3i, pn(tni ) =

λ

hn
(an

3i+1 − an
3i), i = 0, . . . , 2n − 1,

fn(b) = an
3.2n , pn(b) =

λ

hn
(an

3×2n − an
3×2n−1).

(3.12)

Since tni = tn+1
2i we find from (3.11) and (3.12)

fn+1(tni ) = fn(tni ), pn+1(tni ) = pn(tni ), i = 0, . . . , 2n. (3.13)

Below we prove that, for i = 0, . . . , 2n − 1,

fn+1(tn+1
2i+1) =

fn(tni+1) + fn(tni )
2

+ αhn(pn(tni+1) − pn(tni )), (3.14)

pn+1(tn+1
2i+1) = (1 − β)

fn(tni+1) − fn(tni )
hn

+ β
pn(tni+1) + pn(tni )

2
. (3.15)

Comparing (3.13), (3.14) and (3.15) with (2.2)-(2.3) we conclude that fn = f and pn = p on Pn

where f and p are the functions built on ∪Pn by HC1 defined by (2.2)-(2.4) from the initial data
f(a) = a0, p(a) = λ

h (a1 − a0), f(b) = a3 and p(b) = λ
h (a3 − a2), and then extended to [a, b]. So

that, if (α, β) ∈ C, then the sequences fn and pn defined from SC1 by (3.12) converge uniformly to
continuous vector functions f and p defined on [a, b]. Moreover f ∈ C1([a, b]) and f ′ = p.

Now since f ′ is bounded and an
3i+1−an

3i = h
λ2n f

′(tni ), i = 0, . . . , 2n−1, we deduce that an
3i+1−an

3i

tends uniformly to 0. We conclude that the sequence of polygons {A0, . . . , A3×2n} tends to the curve
{f(t), t ∈ I} since an

3i = f(tni ) for i = 0, . . . , 2n.
It remains to prove (3.14) and (3.15). Since α = −v/4λ, for i = 0, . . . , 2n − 1 and using (3.12)

and (3.10),

1
2
(fn(tni+1) + fn(tni )) + αhn(pn(tni+1) − pn(tni ))

=
1
2
(an

3i+3 + an
3i) −

v

4
(an

3i+3 − an
3i+2 − an

3i+1 + an
3i)

= an+1
6i+3 = fn+1(tn+1

2i+1)
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so that (3.14) is proved.

Similarly, for (3.15), let i ∈ {0, . . . , 2n − 1}. With the definitions of γ and δ in (3.5) we find

1 − β

hn
(fn(tni+1) − fn(tni )) +

β

2
(pn(tni+1) + pn(tni ))

=
1 − β

hn
(an

3i+3 − an
3i) +

βλ

2hn
(an

3i+3 − an
3i+2 + an

3i+1 − an
3i)

=
λ

hn+1

( − (
1 − β

2λ
+
β

4
)an

3i +
β

4
an
3i+1 −

β

4
an
3i+2 + (

1 − β

2λ
+
β

4
)an

3i+3

)
=

1
4

λ

hn+1

(
(δ − 2 + v)an

3i + βan
3i+1 − βan

3i+2 + (γ − 2 + v)an
3i+3

)
=

λ

hn+1

(
an+1
6i+4 − an+1

6i+3

)
= pn+1(tn+1

2i+1).

4. Total positivity and consequences.

4.1. Corner Cutting and Total Positivity of the Subdivision Matrix. Consider now the
subdivision process in the EQS-case when α = β

4(1−β) with β ∈ (−2, 0). Since v = −4αλ = β
β−1λ,

or λ = β−1
β v we find from (3.5)

γ = 2 − v +
2 + βλ − 2β

λ
= 2 − v +

2 + (β − 1)v − 2β
(β − 1)v

β =
(2 − v)(v − β)

v
,

and similarly

δ =
(2 − v)(v + β)

v
.

Thus the subdivision matrix (3.4) can be written

S =
1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0
2 2 0 0

(2−v)(v−β)
v v − β v + β (2−v)(v+β)

v
2 − v v v 2 − v

(2−v)(v+β)
v v + β v − β (2−v)(v−β)

v
0 0 2 2
0 0 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.1)

In this case, as soon as 1 ≤ v ≤ 2 and v ≥ −β, we can compute the subdivided control points

(Ā0, Ā1, Ā2, Ā3, Ā4, Ā5, Ā6)T = S(A0, A1, A2, A3)T

by successive convex combinations starting with the polygon defined by (A0, A1, A2, A3). With 2
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intermediate quantities B and C we have

Ā0 = A0, Ā1 =
1
2
A0 +

1
2
A1, Ā5 =

1
2
A2 +

1
2
A3, Ā6 = A3,

B = (1 − v

2
)A0 +

v

2
A1

C = (1 − v

2
)A3 +

v

2
A2

Ā2 =
v − β

2v
B +

v + β

2v
C

Ā4 =
v + β

2v
B +

v − β

2v
C

Ā3 =
1
2
Ā2 +

1
2
Ā4.

(4.2)

_
A

0
=A

0
 

_
A

1

A
1
 

_
A

2

_
A

3

_
A

4

_
A

5

_
A

6
=A

3

B C 

A
2
 

Fig. 4.1. Corner Cutting with α = −3/32, β = −3/5 and v = 1.5.

For v = 2 we obtain B = A1 and C = A2. The value of λ corresponding to v = 2 was considered
in [17, Theorem 10], where formulae similar to (4.2) were given.

The equations (4.2) can be formulated as a corner cutting scheme in the following way. We start
with the polygon {A0, A1, A2, A3} and then either cut one of the previous corners or break an edge
in a sequence of convex combinations.

1. B = (1 − v
2 )A0 + v

2A1 (replace A1 by B to obtain {A0, B,A2, A3})
2. C = (1 − v

2 )A3 + v
2A2 (replace A2 by C to obtain {A0, B, C,A3})

3. Ā1 = (1 − 1
v )A0 + 1

vB (break [A0, B] to obtain {A0, Ā1, B, C,A3})
4. Ā5 = 1

vC + (1 − 1
v )A3 (break [C,A3] to obtain {A0, Ā1, B, C, Ā5, A3} )

5. Ā2 = v−β
2v B + v+β

2v C (replace B by Ā2 to obtain {A0, Ā1, Ā2, C, Ā5, A3})
6. Ā4 = v+β

v−β Ā2 − 2β
v−βC (replace C by Ā4 to obtain {A0, Ā1, Ā2, Ā4, Ā5, A3})

7. Ā3 = (Ā2 + Ā4)/2 (break [Ā2, Ā4] to obtain {A0, Ā1, Ā2, Ā3, Ā4, Ā5, A3})
Since Ā0 = A0 and Ā6 = A3 we have obtained the subdivided polygon {Ā0, Ā1, Ā2, Ā3, Ā4, Ā5, Ā6}

by carrying out a sequence of simple corner cuts (see for example [16, 10]) on the polygon defined
by {A0, A1, A2, A3}.

We recall that a matrix is totally positive if all minors are nonnegative [1]. Then we obtain
Theorem 4.1. Suppose −2 < β < 0, 1 ≤ v := λβ

β−1 ≤ 2, and λ ≥ 1 − β. Then the matrix S
given by (4.1) is totally positive. For each v /∈ [1, 2] there is a β ∈ [−1, 0[ such that S is not totally
positive.

Proof. The sequence of simple corner cuts corresponds to a factorization of S into a product of
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7 matrices as follows:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1

2
1
2 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 v+β

v−β
−2β
v−β 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 v−β

2v
v+β
2v 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1

v 1 − 1
v

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 0
1 − 1

v
1
v 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 v

2 1 − v
2

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
1 − v

2
v
2 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

Since these matrices are bidiagonal and the entries are nonnegative for the indicated values of the
parameters it is well known that each of the 7 matrices are totaly positive (see for example [10]).
Since a product of totally positive matrices is totally positive we conclude that S is totally positive.

If v /∈ [1, 2] then we can find β ∈ [−1, 0) such that S has at least one negative entry. Hence S is
not totally positive for these v, β.

4.2. The HC1-Bernstein Basis. Let a, b be 2 real numbers with a < b and let us define
h := b − a. Recall that the HC1-Hermite basis {φ0, ψ0, φ1, ψ1} on I := [a, b] forms a basis for the
space V C1

α,β(I) of all possible HC1 interpolants on I. The HC1-Bernstein basis {b0, b1, b2, b3} on I
are defined as in [17] from the Hermite basis on I by

b0 := φ0 − λ

h
ψ0, b1 :=

λ

h
ψ0, b2 := −λ

h
ψ1, b3 := φ1 +

λ

h
ψ1, (4.3)

where λ ≥ 2 is the parameter used to define the control points. These functions are clearly linearly
independent and so, they form a basis for V C1

α,β(I). The coefficients in terms of this basis are the
control coefficients of f . This follows since

f := f(a)φ0 + p(a)ψ0 + f(b)φ1 + p(b)ψ1, ⇔ f = a0b0 + a1b1 + a2b2 + a3b3,

where a0, a1, a2, a3 are the control coefficients of f on I given by (3.1).
We note that bj(0) = δj,0 and bj(1) = δj,3.
For certain values of the parameters the HC1-Benstein basis is totally positive.
Theorem 4.2. Suppose −2 < β < 0, 1 ≤ v := λβ

β−1 ≤ 2, and λ ≥ 1 − β. Then the HC1-
Bernstein basis is totally positive.

Proof. It is enough to prove the result for the interval [0, 1]. Consider for some integers n, k
with n ≥ 0 and 0 ≤ k ≤ 2n − 1 the interval In

k := [k/2n, (k + 1)/2n].
On In

k the HC1-Hermite basis {φn
0,k, ψ

n
0,k, φ

n
1,k, ψ

n
1,k} can be expressed as

φn
0,k(t) = φ0(2nt− k), ψn

0,k(t) = 2−nψ0(2nt− k),

φn
1,k(t) = φ1(2nt− k), ψn

1,k(t) = 2−nψ1(2nt− k),

where {φ0, ψ0, φ1, ψ1} is the HC1-Hermite basis on [0, 1]. From (4.3) with h := 2−n, it then follows
that the HC1-Bernstein basis {bn4k, b

n
4k+1, b

n
4k+2, b

n
4k+3} on In

k can be expressed in terms of the HC1-
Bernstein basis {b0, b1, b2, b3} on [0, 1] as

bn4k+j(t) =

{
bj(2nt− k), if t ∈ In

k and j = 0, 1, 2, 3
0 otherwise.

(4.4)
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We note that

bn4k+j(k/2
n) = δj,0, bn4k+j((k + 1)/2n) = δj,3 for j = 0, 1, 2, 3. (4.5)

Let f ∈ C1[0, 1] be a HC1-interpolant to some initial data. We can then write

f =
m∑

i=0

an
i b

n
i ,

where m := 4 × 2n − 1 and where for k = 0, . . . , 2n − 1 the numbers an
4k, an

4k+1, a
n
4k+2, a

n
4k+3 are

the control points of f on In
k . In vector form, we have f = bnan where bn = (bn0 , . . . , b

n
m) is a row

vector and an = (an
0 , . . . , a

n
m)T a column vector. Note that bn is a vector of linearly independent

functions on [0, 1]. They span a space containing V C1
α,β [0, 1] as a 4-dimensional subspace. On level

n + 1 we have f = bn+1an+1, where from Proposition 3.1 it follows that an+1 = Ana
n for some

matrix An. The matrix An is a block diagonal with 2n diagonal blocks Ŝ of order 8 × 4. Indeed,
Ŝ is obtained from the matrix S in (3.4) by adding a copy of row 4 as a new row 5. But then
f = bn+1an+1 = bn+1Ana

n = bnan and by linear independence, it follows that bn = bn+1An. Thus
we obtain

b0 = bnAn−1 · · ·A0, n ≥ 1. (4.6)

For distinct points y0, . . . , yp and functions f0, . . . , fq defined on the y’s, we use the standard notation

M

[
y0, . . . , yp

f0, . . . , fq

]
:=

⎡
⎢⎣
f0(y0) · · · fq(y0)

...
...

f0(yp) · · · fq(yp)

⎤
⎥⎦

for a collocation matrix of order (p + 1) × (q + 1). In order to show total positivity of b = b0 we

choose 0 ≤ x0 < x1 < x2 < x3 ≤ 1 and consider the collocation matrix M

[
x0, x1, x2, x3

b0, b1, b2, b3

]
. From

(4.6) we immediatly obtain

M

[
x0, . . . , x3

b0, . . . , b3

]
= M

[
x0, . . . , x3

bn0 , . . . , b
n
m

]
An−1 · · ·A0, n ≥ 1. (4.7)

Since the matrix S is totally positive, it follows that Ŝ and hence each Ak is totally positive. We now
show that the first matrix on the right of (4.7) is totally positive provided xj ∈ Pn for j = 0, 1, 2, 3.
For this, with m = 2n−1 − 1, we consider the bigger matrix

B = M

[
y0, . . . , ym+1

bn0 , . . . , b
n
m

]

using all points yi = i/2n, i = 0, 1, . . . , 2n in Pn. From (4.5) it follows that b4k−1(yk) = 1 for
k = 1, . . . , 2n, b4k(yk) = 1 for k = 0, . . . , 2n − 1 and bni (yj) = 0 otherwise. Thus the columns of B
have the following form

B = [e1, 0, 0, e2, e2, 0, 0, e3, e3, 0, 0, e4 . . . , em, 0, 0, em+1],

where ej = (δi,j)m
i=0 is the jth unit vector in R

m+1. From this explicit form we see that B is totally
positive since each nonzero minor must be the determinant of the identity matrix. But then all

matrices on the right in (4.7) are totally positive and we conclude that M
[
x0, . . . , x3

b0, . . . , b3

]
is totally

positive provided xj ∈ Pn for j = 0, 1, 2, 3. Since ∪Pn is dense in [0, 1] we conclude that the
HC1-Bernstein basis is totally positive.
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Corollary 4.3. For p ≥ 0 and m = 4 ·2p−1, the basis bp = (bp0, . . . , b
p
m) for the space span(bp)

is totally positive on [0, 1].
Proof. Instead of (4.6) we use for n > p the equation

bp = bnAn−1 · · ·Ap.

The argument now proceeds as in the proof of Theorem 4.2 replacing x0, . . . , x3 by suitable x0, . . . , xm.

It is well known that total positivity of the HC1 Bernstein basis on [0, 1] implies that the HC1-
interpolant f inherits properties of the control polygon P 0 defined by {a0, a1, a2, a3}, see for example
([10]). In particular if P0 is positive (monotone, convex) then f is positive (monotone, convex). We
can use this to generalize Theorem 4 in ([17]).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Fig. 4.2. Bernstein basis, β = −3/5, α = −3/32, λ = 16/3.

Corollary 4.4. Let b0, b1, b2, b3 be the HC1 Bernstein basis on [0, 1] given by (4.3) with
λ = v(β − 1)/β > 2. Suppose also α = β

4(1−β) , −1 ≤ β < 0 and 1 ≤ v ≤ 2. Then
1. b0 is nonnegative, decreasing, and convex on [0, 1]. If v = 2 then b0(t) = 0 for t ∈ [1/2, 1].
2. b1 is nonnegative and concave on [0, 1/2] and nonnegative, decreasing and convex on [1/2, 1]
3. b2 is nonnegative, increasing and convex on [0, 1/2] and nonnegative and concave on [1/2, 1].
4. b3 is nonnegative, increasing, and convex on [0, 1]. If v = 2 then b3(t) = 0 for t ∈ [0, 1/2].
5.

∑3
j=0 bj(t) = 1 for t ∈ [0, 1]

Proof. From (4.3) it follows that the control points of the function bj is the jth unit vector ej+1

for j = 0, 1, 2, 3. Thus nonnegativity of bj follows from the nonnegativity of ej+1 for j = 0, 1, 2, 3.
Moreover the monotonicity and convexity properties of b0 and b3 follow. For the remaining properties
of b1 and b2, we carry out one subdivision, then the proof is similar.

The refined points are given as the columns of the matrix S given by (4.1). When v = 2 the first
column is given by [1, 1/2, 0, 0, 0, 0, 0]. Since the last four entries are zero it follows that b0(t) = 0
for t ∈ [1/2, 1]. Similarly b3(t) = 0 for t ∈ [0, 1/2].

The interpolation of the constant function f = 1 with p = f ′ = 0 gives a0 = a1 = a2 = a3 = 1
in (3.1) so that 5. holds.

5. Algorithms for local shape constraints. We base shape preserving algorithms on the
extended quadratic spline case given by α = β

4(1−β) . The control point subdivision matrix for this
case is given by (4.1), where we have both β and λ as free parameters. The matrix simplifies when
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v = βλ
β−1 = 2 and we will use this one parameter family of schemes in our algorithms. Using the

parameter λ to control the shape we thus have

α =
β

4(1 − β)
= − 1

2λ
, β =

2
2 − λ

. (5.1)

We restrict our attention to λ ≥ 4. We then have β ∈ [−1, 0) and both algorithms HC1 and
SC1 are convergent. In the limit when n→ ∞ we obtain a function f ∈ C1(I). This function is the
quadratic spline interpolant with a knot at the midpoint of I when λ = 4 , while p = f ′ is Hölder
continuous on I with exponent

log2

(
1 +

1
λ− 3

) ≈ 1.44
λ− 3

, λ→ ∞.

Thus the derivative becomes less regular when λ increases, but it is always C1.
Given s ≥ 1, points a0

j = aj ∈ R
s for j = 0, 1, 2, 3, and λ ≥ 4, the following algorithm computes

sequences {an} of control coefficients an = (an
0 , a

n
1 , . . . , a

n
3×2n) in R

s.
Algorithm 5.1 (CC1).
1. β = 2/(2 − λ);
2. For n = 0, 1, 2, 3, . . .

For i = 0, 1, . . . 2n − 1
(a) an+1

6i = an
3i;

(b) an+1
6i+1 = 1

2 (an
3i + an

3i+1);
(c) an+1

6i+2 = (1
2 − β

4 )an
3i+1 + (1

2 + β
4 )an

3i+2;
(d) an+1

6i+3 = 1
2 (an

3i+1 + an
3i+2);

(e) an+1
6i+4 = (1

2 + β
4 )an

3i+1 + (1
2 − β

4 )an
3i+2;

(f) an+1
6i+5 = 1

2 (an
3i+2 + an

3i+3);
a3·2n+1 = a3·2n ;

The control points corresponding to the computed control coefficients converges to a C1-curve.
More specifically, pick any finite closed interval [a, b] and define hn := (b− a)/2n and tnk := a+ khn

for k = 0, . . . , 2n, n ≥ 0. By Theorem 3.4 the computed control points converge uniformly to a
C1-curve f : [a, b] → R

s. Moreover,

an
3i = f(tni ), i = 0, . . . , 2n,

an
3i+1 − an

3i =
hn

λ
f ′(tni ), i = 0, . . . , 2n − 1,

an
3i − an

3i−1 =
hn

λ
f ′(tni ), i = 1, . . . , 2n.

We now discuss shape preservation in the scalar case s = 1 in more detail. We start by noting
that if the initial control polygon is nonnegative (respectively increasing, convex) on an interval
I = [a, b], then the HC1-interpolant computed in Algorithm 5.1 will be nonnegative (respectively
increasing, convex) on the same interval I. This follows from the total positivity of the Bern-
stein basis. In addition to total positivity the main tool will be Corollary 2.2 which says that the
p-values of the interpolant are located on the piecewise linear curve connecting the three points
(a, p(a)), (a+b

2 , p(a+b
2 )), (b, p(b)).

5.1. Nonnegative Interpolants. We already remarked that if the initial control coefficients
are nonnegative then the HC1-interpolant will be nonnegative. Notice that the converse is false. For
example, the HC1-interpolant to the function f given on [0, 1] by f(x) := 16(x − 1/4)2 and using
λ = 4 is f itself. Note that f is nonnegative, but the initial control coefficient a1 = −1 is negative.

To give an algorithm for constructing a nonnegative interpolant we assume that

f(a) ≥ 0, f(b) ≥ 0, p(a) ≥ 0 if f(a) = 0, and p(b) ≤ 0 if f(b) = 0. (5.2)
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Under these weak assumptions nonnegative initial control coefficients a0, . . . , a3 can always be ob-
tained by choosing λ sufficiently large. Indeed, since a0 = f(a) ≥ 0 and a3 = f(b) ≥ 0 we only need
to make sure that a1 = f(a) + hp(a)/λ ≥ 0 and a2 = f(b) − hp(b)/λ ≥ 0. If f(a) = 0 then p(a) ≥ 0
and a1 ≥ 0 whenever λ > 0 . Similarly a2 ≥ 0 if f(b) = 0. But then we can choose λ = 4 except
possibly in the two cases f(a) > 0, p(a) < 0 and f(b) > 0, p(b) > 0. If (5.2) holds then the following
algorithm will compute a nonnegative HC1-interpolant on [a, b].

Algorithm 5.2 (Nonnegative Interpolant).
1. Compute λ

(a) λ = 4;
(b) if (f(a) > 0) & (p(a) < 0) then λ = max(λ,−hp(a)/f(a));
(c) if (f(b) > 0) & (p(b) > 0) then λ = max(λ, hp(b)/f(b));

2. Compute initial control coefficients using (3.1).
3. Apply Algorithm 5.1 or Algorithm HC1 with α = − 1

2λ , β = 2
2−λ .

5.2. Monotone interpolants. The monotonicity of the HC1-interpolant is completely deter-
mined by the monotonicity of the initial control polygon. If f is decreasing then −f is increasing
and we restrict our discussion to increasing interpolants.

Proposition 5.3. Suppose that the parameters are chosen according to (5.1). Then the HC1-
interpolant f is nondecreasing on an interval I = [a, b] if and only if the control polygon on I is
nondecreasing.

Proof. By Theorem 4.2 the Bernstein basis is totally positive and it follows that the HC1-
interpolant is nondecreasing if the control polygon is nondecreasing , see [10]. Conversely, suppose
the HC1-interpolant f is nondecreasing. Since β = 2/(2 − λ), we obtain from (2.1)

p(
a+ b

2
) =

1
λ− 2

(
λ
f(b) − f(a)

h
− (p(a) + p(b))

)
. (5.3)

From (3.1), we then find

a1 − a0 =
h

λ
p(a), a2 − a1 =

λ− 2
λ

hp(
a+ b

2
), a3 − a2 =

h

λ
p(b). (5.4)

Now p ≥ 0 at all points if f is nondecreasing. It follows that the control coefficients, and hence the
control polygon is nondecreasing.

Consider next the case of a strictly increasing interpolant.
Proposition 5.4. Suppose that the parameters are chosen according to (5.1) and that the

HC1-interpolant f is nondecreasing on an interval I = [a, b]. Then f is strictly increasing on [a, b]
if and only if the two middle control coefficients on I satisfy a2 > a1.

Proof. Since f is nondecreasing, we have p(a) ≥ 0, p(a+b
2 ) ≥ 0 and p(b) ≥ 0. By Corollary 2.2,

it follows that f is strictly increasing on [a, b] if and only if p(a+b
2 ) > 0. By (5.4), this happens if

and only if a2 > a1.

To give an algorithm to construct a nondecreasing interpolant we assume that

f(a) ≤ f(b), p(a) ≥ 0, p(b) ≥ 0 and p(a) = p(b) = 0 if f(a) = f(b). (5.5)

In the latter case the HC1-interpolant is constant and we can set λ = 4.
Suppose f(b) > f(a). With h := b− a we then have

a0 = f(a) ≤ a1 = f(a) +
h

λ
p(a) ≤ a2 = f(b) − h

λ
p(b) ≤ a3 = f(b)

provided

a2 − a1 = f(b) − f(a) − h

λ

(
p(b) + p(a)

) ≥ 0
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or

λ ≥ (p(a) + p(b))h
f(b) − f(a)

. (5.6)

If (5.5) holds then the following algorithm will compute a nondecreasing HC1-interpolant on
[a, b]. It will be strictly increasing if f(b) > f(a) and (5.6) holds with strict inequality.

Algorithm 5.5 (Nondecreasing- or Strictly Increasing Interpolant).
1. Compute λ

(a) λ = 4;
(b) If f(a) < f(b) then

i. λ1 ≥ (p(a)+p(b))h
f(b)−f(a)

ii. λ = max (4, λ1)
2. Compute initial control coefficients using (3.1).
3. Apply Algorithm 5.1 or Algorithm HC1 with α = − 1

2λ , β = 2
2−λ .

Note that if the initial control points are located on a straight line then the HC1-interpolant
is the line segment connecting the first and last control point. For if the initial control points are
located on a straight line then

λ

h
(a1 − a0) =

λ

(λ− 2)h
(a2 − a1) =

λ

h
(a3 − a2)

and by (5.4) the three slopes p(a), p(a+b
2 ), p(b) are all equal. By Corollary 2.2, all slopes are equal

and the function f is a straight line.
In Figure 5.1 we interpolate three sets of data on [0, 1]. In all cases f(0) = −1 and f(1) = 1. In

the first case, with p(0) = 3 and p(1) = 4 we find p(0)+p(1)
f(1)−f(0) = 7/2 < 4. Suppose in Algorithm 5.5

we choose 7/2 ≤ λ1 ≤ 4 in Statement (b)i. and apply Algorithm 5.1 with λ = 4. Then the HC1-
interpolant is the quadratic spline and it is strictly increasing since λ > 7/2. In the two other cases
we use p(0) = 8 and p(1) = 4 giving p(0)+p(1)

f(1)−f(0) = 6. With λ = 6 we have p(1/2) = 0 and the
interpolant is increasing, but not strictly increasing. We obtain a strictly increasing interpolant by
using λ = 10. Note that choosing a bigger λ decreases the regularity of the interpolant. In both
cases the first derivative is Hölder continuous, but the exponent is log2 (4/3) ≈ 0.415 when λ = 6
and log2 (4/3) ≈ 0.193 when λ = 10.

5.3. Convex interpolants. The convexity of the HC1-interpolant is also completely deter-
mined by the convexity of the initial control polygon.

Proposition 5.6. Suppose that the parameters are chosen according to (5.1). Then f is convex
(concave) on an interval I = [a, b] if and only if the control polygon on I is convex (concave).

Proof. Again by total positivity of the Bernstein basis the HC1-interpolant is convex (concave)
if the control polygon is convex (concave), see [10]. Conversely, suppose the HC1-interpolant f is
convex (concave). Now the control polygon is convex if and only if the conditions

a1 − a0

h/λ
≤ a2 − a1

h− 2h/λ
≤ a3 − a2

h/λ

hold. But from (5.4) we find

a1 − a0

h/λ
= p(a),

a2 − a1

h− 2h/λ
= p(

a+ b

2
),

a3 − a2

h/λ
= p(b).

Since f is convex (concave) the function p is nondecreasing (nonincreasing) and hence the control
polygon is convex(concave).



21

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

f
1
 

f
2
 

f
3
 

p
1
=f ’

1
 

p
2
=f ’

2
 

p
3
=f ’

3
 

λ=4 

λ=6 

λ=10 

Fig. 5.1. Monotone interpolants

To give an algorithm for constructing a convex (concave) HC1-interpolant on an interval I =
[a, b] we first assume that

p(a) <
f(b) − f(a)

h
< p(b)

(
p(a) >

f(b) − f(a)
h

> p(b)
)
, (5.7)

where h := b− a. We define

λ1 :=
p(b) − p(a)

p(b) − f(b)−f(a)
h

, λ2 :=
p(b) − p(a)

f(b)−f(a)
h − p(a)

(5.8)

and note that the tangents

tc(x) := f(a) + (x − a)p(a), td(x) := f(b) + (x− b)p(b)

of f at a and b intersect at the point(x̄, ȳ) given by

x̄− a

h
=

1
λ1
, and

b− x̄

h
=

1
λ2
.

Moreover, the hypothesis (5.7) is equivalent to a < x̄ < b.
Under the assumption

p(a) ≤ f(b) − f(a)
h

≤ p(b)
(
p(a) ≥ f(b) − f(a)

h
≥ p(b)

)
(5.9)

the following algorithm will compute a convex (concave) interpolant.
Algorithm 5.7 (Convex or Concave interpolant).

1. (a) If p(a) = f(b)−f(a)
h �= p(b), choose λ ≥ max (4, λ1)

(b) If p(a) �= f(b)−f(a)
h = p(b), choose λ ≥ max (4, λ2)
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Fig. 5.2. Convex interpolants

(c) If p(a) �= f(b)−f(a)
h �= p(b), choose λ ≥ max (4, λ1, λ2)

2. Compute initial control points using (3.1)
3. Apply Algorithm 5.1 or Algorithm HC1 with α = − 1

2λ , β = 2
2−λ .

In Figure 5.2, we have interpolated three sets of data on [0, 1]. In all cases f(0) = 0.5 and
f(1) = 1.

In the first case, p(0) = −1 and p(1) = 3 so that λ1 = 8/5 and λ2 = 8/3. Then max (4, λ1, λ2) = 4
and we have chosen λ = 4. In this case, the interpolant is the quadratic spline.

In the two other cases p(0) = −1 and p(1) = 8 so that λ1 = 18/5 and λ2 = 6. Then
max (4, λ1, λ2) = 6. With λ = 6 we have p = −1 on [0, 1/2], while we obtain a strictly convex
interpolant by using λ = 10. Recall that choosing a bigger λ decreases the regularity of the inter-
polant.

6. Example. Given data (ti, yi, y
′
i) for i = 1, . . . , n, where t1 < · · · < tn and the y’s are real

numbers. We look for a function f ∈ C1([t1, tn]) that satisfies

f(ti) = yi, f
′(ti) = y′i for i = 1, . . . , n. (6.1)

In addition we would like f to be positive, monotone, linear, or convex on some or all of the
subintervals Ii = [ti, ti+1], i = 1, . . . n− 1. We assume that

(P) (5.2) holds for the subintervals where we want nonnegativity or positivity.
(M) (5.5) holds for the subintervals where we want a nondecreasing or a strictly increasing

interpolant.
(L) y′i = y′i+1 = yi+1−yi

ti+1−ti
for the subintervals where the interpolant should be linear.

(C) (5.9) holds for the subintervals where the interpolant should be convex or concave.
We also require that the given data is consistent with these shape requirements. We can compute
f locally by applying the HC1-algorithm with parameters given by (5.1) on each subinterval Ii =
[ti, ti+1], i = 1, . . . n − 1 using initial data f(ti) = yi, f(ti+1) = yi+1, p(ti) = y′i and p(ti+1) = y′i+1.
We obtain C1-convergence and the desired shape locally by choosing the parameter λi for the interval
Ii sufficiently large.
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Fig. 5.3. The function φ and its derivative
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Fig. 6.1. Interpolation with exact derivatives

Consider now (6.1) for the example illustrated in Figure 1.1. The data are sampled from the
function φ ∈ C1([0, 4]) given by

φ(t) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 sin(2πt+ π/2) + 1

2 , 0 ≤ t ≤ 1,
1 + exp(− 1

1−(t−2)2 + 1) , 1 < t ≤ 2,
2 , 2 < t ≤ 3,

2 cos(π t−3
2 ) , 3 ≤ t ≤ 4.

(6.2)

The function and its first derivative are displayed in Figure 5.3 and it can be shown that φ is
positive on [0, 1], strictly increasing on [1, 2], constant on [2, 3] and concave on [3, 4]. Given n and
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let (t1, . . . , tn) be a partition of [0, 4]. The points (t2, . . . , tn−1) are chosen randomly except that
1, 2, 3 are among them. In the example, we used t1 = 0, tn1 = t5 = 1, tn2 = t9 = 2, tn3 = t13 = 3
and tn = t17 = 4. We want an interpolant f which is positive on [t1, tn1 ] = [0, 1], strictly increasing
on [tn1 , tn2 ] = [1, 2], constant on [tn2 , tn3 = [2, 3] and concave on [tn3 , tn] = [3, 4].
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Fig. 6.2. Interpolation with modified derivatives

In the first test we use yi = φ(ti) and exact derivatives y′i = φ′(ti), i = 1, . . . , n. In this case all
λ’s become equal to 4 and the quadratic spline interpolant f1 does the job. Plots of this function
and its first derivative are shown in Figure 6. The first derivative appears continuous and piecewise
linear.

For the second test shown in Figure 6, we kept the previous data ti and yi = φ(ti) for i =
1, . . . , n = 17, but we used inexact derivatives given by crosses in the lower part of the figure.
However the derivatives were chosen so that the relevant requirement (P),(M), (L), and (C) above
are satisfied on each subinterval [ti, ti+1]. We obtain a C1-interpolant f2 satisfying the required
shape constraints. The computed values of λi are successively
(4, 5.1425, 4, 4, 4, 12.8631, 55.8239, 4, 4, 4, 4, 17.6767, 20.0216, 4.4087, 11.3544). These are the smallest
values on each interval. Any larger value of λi is possible without loosing the shape, but then the
curve is less regular (smaller Hölder exponent) on the corresponding interval. This example shows
that we can obtain a desired shape even with more or less random derivative values.

7. Conclusion. We have shown that the Hermite subdivision scheme introduced by Merrien
in 1992 has many desirable properties. It gives a C1 limit curve for a wide range of parameters. A
one parameter subfamily called the Extended Quadratic Spline-scheme is particularly interesting.
This family can be formulated as a scheme, the SC1 algorithm, with a totally positive subdivision
matrix. When applied in a piecewise fashion its local nature makes it easy to control the final shape
of the subdivision curve. In many cases a desired shape can be obtained even without accurate
derivative estimates.

The SC1 algorithm can also be used in the parametric case, but a discussion of this will be
deferred to a future paper. We also defer the construction of interpolating C1 surfaces with shape
preserving properties.
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