

Année universitaire 2016-2017 CONTRÔLE TP ANALYSE NUMÉRIQUE

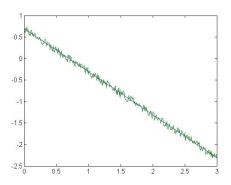
Vendredi 13 janvier 2017 — durée : 2h

Exercice 1: Les valeurs $(x(i), y(i))_{i=1,\dots,m}$ étant données, on cherche à approcher ce nuage de points par une fonction du type $y = \alpha e^{\lambda x}$.

1. Construire une fonction Ep(alpha, lambda, x) calculant $\mathbf{y} = \alpha e^{\lambda \mathbf{x}}$ pour un tableau \mathbf{x} . La tester avec $\alpha = 2, \lambda = -1, x$ sur l'intervalle [0, 2] avec un pas uniforme de 0.5. Soit (\mathbf{x}, \mathbf{y}) le jeu de données obtenu.

```
>> x = ...
>> y = Ep(2, -1, x)
y = 2.0000 	 1.2131 	 0.7358 	 0.4463 	 0.2707
```

2. On va construire maintenant un jeu de données bruitées. Bruiter le signal précédent à hauteur de 10%, c'est à dire entre 90% et 110% de chaque valeur de \boldsymbol{y} . Soient $(\boldsymbol{x}, \boldsymbol{y}b)$ le jeu de données obtenu. Calculer et tracer $(\boldsymbol{x}, \log(\boldsymbol{y}))$ et $(\boldsymbol{x}, \log(\boldsymbol{y}b))$. Sauvegarder ce programme sous VI1.m (note VI sont vos initiales). Test $\alpha = 2$, $\lambda = -1$ sur l'intervalle [0,3] avec un pas de 0.01.



- 3. On veut approcher les données $(\boldsymbol{x}, \boldsymbol{z} = \log(\boldsymbol{y}b))$ par une droite z = ax + b en utilisant la méthode des moindres carrées. Compléter le programme précédent en construisant la matrice \boldsymbol{A} et le second membre \boldsymbol{z} associés au problème moindres carrées : minimiser $\sum_{i=1}^{m} (\log(yb)_i (ax_i + b))^2$. Sauvegarder sous VI2.m. Mêmes données.
- 4. Compléter le programme précédent en résolvant le problème min $\|Au z\|$ au sens des moindres carrées où $u = [a, b]^T$. On affichera la matrice $A^T \times A$, le vecteur A^Tz et la solution u. Sauvergarder ce programme sous VI3.m . Mêmes données.
- 5. Comparer les valeurs a et b trouvées au valeurs initiales λ et α . Remarques en commentaire sur votre programme.
- 6. En déduire une courbe approchant les donnes $(\boldsymbol{x},\boldsymbol{y}b)$. Compléter le programme précédent en traçant les graphes de $(\boldsymbol{x},\boldsymbol{y})$ et $(\boldsymbol{x},\boldsymbol{y}\ell)$ où $\boldsymbol{y}\ell$ est le signal lissé, $y\ell=e^{ax+b}=e^b\times e^{ax}$. Sauvegarde sous VI4.m.

Exercice 2 : On cherche maintenant à déterminer si un tableau de données $T = [x, y] \in \mathbb{R}^{m \times 2}$ suit une loi de Poisson $y = \alpha e^{-\alpha x}$.

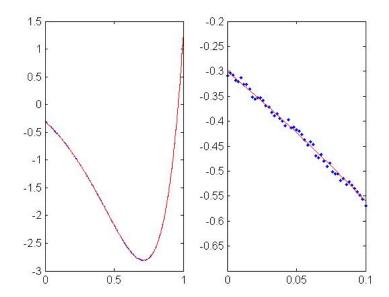
A l'aide de l'exercice 1, construire un programme testant si le fichier 'donnees1' peut être approché par une loi de Poisson donc avec les notations de l'exercice précédent, |α – λ| ≤ precis. On affichera la matrice A^TA et A^Ty. Sauvegarder votre travail sous le fichier VI5.m. Données dans le fichier et precis = 0.02. La lecture des données se fait par la commande : T=csvread('donnees1')

2. Testez maintenant le fichier 'donnees2' et *precis* = 0.02. Sauvegarder votre travail sous le fichier VI6.m.

Exercice 3:

On cherche à déterminer les coefficients α_i de la loi $\sum_{i=1}^n \alpha_i e^{(i-1)x}$ approchant au sens des moindres carrées les données $\boldsymbol{T} = [\boldsymbol{x}, \boldsymbol{y}] \in \mathbb{R}^{m \times 2}$ du fichier 'donnees3'.

- 1. On choisit n = 5. Construire la matrice \boldsymbol{A} et le vecteur \boldsymbol{b} associée au problème moindres carrées min $\|\boldsymbol{A}\boldsymbol{\alpha} \boldsymbol{b}\|$.
- 2. En déduire la matrice A^TA , le vecteur A^Tb puis la solution α qu'on affichera. Sauvegarde dans VI7.m.
- 3. Dessiner les données $\{(x_i,y_i)\}_{i=1,\dots,m}$ et la loi $z=\sum_{i=1}^n \alpha_i e^{(i-1)x}$ pour $x\in[0,1]$, puis sur un second graphe en traçant uniquement la partie pour $x\in[0,0.1]$. Sauvegarde dans VI8.m.



4. On reprend avec n=8. Sauvegarde dans VI9.m. Que constate-t-on? Réponse en fin de programme en commentaire.