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Abstract

We propose a simplex spline basis for a space of C1-cubics on the
Clough-Tocher split on a triangle. The 12 elements of the basis give a
nonnegative partition of unity. We derive two Marsden-like identities,
three quasi-interpolants with optimal approximation order and prove
L∞ stability of the basis. The conditions for C1-junction to neighbor-
ing triangles are simple and similar to the C1 conditions for the cubic
Bernstein polynomials on a triangulation. The simplex spline basis can
also be linked to the Hermite basis to solve the classical interpolation
problem on the Clough-Tocher split.

Keywords: Triangle Mesh, Piecewise polynomials, Interpolation, Sim-
plex Splines, Marsden-like Identity.

1 Introduction

Piecewise polynomials over triangles have applications in several branches of
the sciences ranging from finite element analysis, surfaces in computer aided
design and other engineering problems. For many of these applications,
piecewise linear C0 surfaces do not suffice. In some cases, we need smoother
surfaces for modeling, or higher degrees to increase the approximation order.
To obtain C1 smoothness on an arbitrary triangulation, one needs piecewise
quintic polynomials, [6]. We can use lower degrees if we are willing to split
each triangle into a number of subtriangles. Examples are the Clough-Tocher
split (CT), [1] and the Powell-Sabin 6 and 12-splits (PS6, PS12), [11]. The
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number of subtriangles is 3, 6 and 12 for CT, PS6 and PS12, respectively. A
B-spline like basis both for C1 cubics and C2 quintics has been constructed
for PS6, [5, 12] and references therein. Recently a B-spline like basis has
also been proposed for a 9 dimensional subspace of C1 cubics on CT, [5].
The PS12-split can be defined as the complete graph obtained by connecting
vertices and edge midpoints of each triangle. A B-spline basis for PS12 and
the full space of C1- cubics on CT seem difficult. An alternative to the
B-spline basis is the Hermite basis. Since it uses both values and derivatives
it is not as stable as the B-spline basis and it does not form a nonnegative
partition of unity.

Here we construct a B-spline basis for one triangle in the coarse triangula-
tion and connect to neighboring triangles using Bernstein-Bézier techniques.
This was done for PS12 using C1 quadratics, [2], and C2 and C3 quintics,
[7, 8]. These bases, consisting of simplex splines (see for example [10] for a
general introduction), all share attractive properties of univariate B-splines
such as

• a differentiation formula

• a stable recurrence relation

• a knot insertion formula

• they constitute a nonnegative partition of unity

• simple explicit dual functionals

• L∞ stability

• simple conditions for C1 and C2 joins to neighboring triangles

• well conditioned collocation matrices for Lagrange and Hermite inter-
polation using certain sites.

In this paper we consider the full 12 dimensional space of C1 cubics on
the CT-split. We will define a simplex spline basis for this split and show
that it has all the B-spline and Bernstein-Bézier properties mentioned above.

The CT-split is interesting for many reasons. To obtain a space of C1

piecewise polynomials of degree at most 3 on an arbitrary triangulation,
we only need to divide each triangle into 3 subtriangles, while 6 and 12
subtriangles are needed for PS6 and PS12. Moreover, the approximation
order of the space S3 of piecewise C1 cubics on CT is 4 and this is at
least as good as for the spaces S6 and S12 of piecewise cubics on PS6 and
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piecewise quadratics on PS12. The degrees of freedom for S6 are values and
gradients of the vertices of the coarse triangulation while for S3 and S12 we
need in addition cross boundary derivatives at the midpoint of the edges,
see Figure 1 (left). For further comparisons of these three spaces see Section
6.6 in [6].

This paper is organized as follows: In the remaining part of the intro-
duction, we review some properties of CT, introduce our notation and recall
the main properties of simplex splines. In Section 2, we construct a cubic
simplex spline basis for CT, from which, in Section 3, we derive two Mars-
den identities and then, in Section 4, three quasi-interpolants, and show L∞

stability of the basis. In Section 5, conditions to ensure C0 and C1 con-
tinuity across an edge between two triangles are derived. The conversion
between the simplex spline basis and the Hermite basis for CT is considered
in Section 6. Lagrange and Hermite interpolation on triangulations using
C1 cubics, quartics and higher degrees have also been considered in [3]. We
end the paper with numerical examples of interpolation on a triangulation.

1.1 The Clough-Tocher split

To describe this split, let T := 〈p1,p2,p3〉 be a nondegenerate triangle in
R
2. Using the barycenter pT := (p1 + p2 + p3)/3 we can split T into three

subtriangles T1 := 〈pT ,p2,p3〉, T2 := 〈pT ,p3,p1〉 and T3 := 〈pT ,p1,p2〉.
On T we consider the space

S
1
3( ) := {f ∈ C1(T ) : f|Ti is a polynomial of degree at most 3, i = 1, 2, 3}.

(1)
This is a linear space of dimension 12, [6]. Indeed, each element in the
space can be determined uniquely by specifying values and gradients at the
3 vertices and cross boundary derivatives at the midpoint of the edges, see
Figure 1, (right).

We associate the half open edges

〈pi,pT ) := {(1− t)pi + tpT : 0 ≤ t < 1}, i = 1, 2, 3,

with subtriangles of T as follows

〈p1,pT ) ∈ T2, 〈p2,pT ) ∈ T3, 〈p3,pT ) ∈ T1, (2)

and we somewhat arbitrarily assume pT ∈ T2.
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Figure 1: The PS12-split (left) and the CT-split (right). The C1 quadrat-
ics on PS-12 and C1 cubics on CT have the same degrees of freedom as
indicated.

1.2 Notation

We let N be the set of natural numbers and N0 := N ∪ {0} the set of
nonnegative integers. For a given degree d ∈ N0, the space of polynomials
of total degree at most d will be denoted by Pd. The Bernstein polynomials
of degree d on T are given by

Bd
ijk(p) := Bd

ijk(β1, β2, β3) :=
d!

i!j!k!
βi1β

j
2β

k
3 , i, j, k ∈ N0, i+j+k = d, (3)

where p ∈ R
2 and β1, β2, β3, given by

p = β1p1 + β2p2 + β3p3, β1 + β2 + β3 = 1, (4)

are the barycentric coordinates of p. The set

Bd := {Bd
ijk : i, j, k ∈ N0, i+ j + k = d} (5)

is a partition of unity basis for Pd. The points

pd
ijk :=

ip1 + jp2 + kp3

d
, i, j, k ∈ N0, i+ j + k = d, (6)

are called the domain points of Bd relative to T . In this paper, we will
order the cubic Bernstein polynomials by going counterclockwise around the
boundary, starting at p1 with B3

300 and ending with B3
111, see Figure 2

{B1, B2, . . . , B10} := {B3
300, B

3
210, B

3
120, B

3
030, B

3
021, B

3
012, B

3
003, B

3
102, B

3
201, B

3
111}.

(7)
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The corresponding ordering of the cubic domain points are

{

p∗
1, . . . ,p

∗
10

}

:=
{

p1,
2p1 + p2

3
,
p1 + 2p2

3
,p2,

2p2 + p3

3
,
p2 + 2p3

3
,

p3,
2p3 + p1

3
,
p3 + 2p1

3
,pT

}

.

(8)

The partial derivatives of a bivariate function f = f(x1, x2) are denoted
∂1,0f := ∂f

∂x1
, ∂0,1f := ∂f

∂x2
, and ∂uf := (u1∂1,0 + u2∂0,1)f is the derivative

in the direction u := (u1, u2). We denote by ∂βj
f , j = 1, 2, 3 the partial

derivatives of f(β1, β2, β3) with respect to the barycentric coordinates of
f . The symbols 〈S〉 and 〈S〉o are the closed and open convex hull of a set
S ∈ R

m. For k ≤ m, we let volk(S) be the k dimensional volume of S and
define 1S : Rm → R by

1S(x) :=

{

1, if x ∈ S,

0, otherwise.

By the association (2), we note that for any x ∈ T

1T1(x) + 1T2(x) + 1T3(x) = 1T (x). (9)

We write #K for the number of elements in a sequence K.

1.3 Bivariate simplex splines

In this section we recall some basic properties of simplex splines.
For n ∈ N, d ∈ N0, let m := n+ d and k1, . . . ,km+1 ∈ R

n be a sequence
of points called knots. The multiplicity of a knot is the number of times
it occurs in the sequence. Let σ = 〈k1, . . . ,km+1〉 with volm(σ) > 0 be a
simplex in R

m whose projection π : Rm → R
n onto the first n coordinates

satisfies π(ki) = ki, for i = 1, . . . ,m+ 1.
With [K] := [k1, . . . ,km+1], the unit integral simplex spline M [K]

can be defined geometrically by

M [K] : Rn → R, M [K](x) :=
volm−n

(

σ ∩ π−1(x)
)

volm(σ)
.

For properties of M [K] and proofs see for example [10]. Here, we mention:

• If n = 1 then M [K] is the univariate B-spline of degree d with knots
K, normalized to have integral one.
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• In general M [K] is a nonnegative piecewise polynomial of total degree
d and support 〈K〉.

• For d = 0 we have

M [K](x) :=

{

1/voln(〈K〉), x ∈ 〈K〉o,

0, if x /∈ 〈K〉.
(10)

• The value of M [K] on the boundary of 〈K〉 has to be delt with sepa-
rately, see below.

• If voln(〈K〉) = 0 then M [K] can be defined either as identically zero
or as a distribution.

We will deal with the bivariate case n = 2, and for our purpose it is con-
venient to work with area normalized simplex splines, [8]. They are
defined by Q[K](x) = 0 for all x ∈ R

2 if vol2(〈K〉) = 0, and otherwise

QT [K] = Q[K] :=
vol2(T )
(

d+2
2

) M [K], (11)

where T in general is some subset of R2, and in our case will be the triangle
T := 〈p1,p2,p3〉. The knot sequence is [p1,p2,p3,pT ] taken with multi-
plicities. Using properties of M [K] and (11), we obtain the following for
Q[K]:

• It is a piecewise polynomial of degree d = #K − 3 with support
〈K〉

• knot lines are the lines in the complete graph of K

• local smoothness: Across a knot line, Q[K] ∈ Cd+1−µ, where d is
the degree and µ is the number of knots on that knot line, including
multiplicities

• differentiation formula: ∂uQ[K] = d
∑d+3

j=1 ajQ[K \ kj ],

for any u ∈ R
2 and any a1, . . . , ad+3 such that

∑

j ajkj = u,
∑

j aj = 0
(A-recurrence)

• recurrence relation: Q[K](x) =
∑d+3

j=1 bjQ[K \ kj ](x),

for any x ∈ R
2 and any b1, . . . , bd+3 such that

∑

j bjkj = x,
∑

j bj = 1
(B-recurrence)
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• knot insertion formula: Q[K] =
∑d+3

j=1 cjQ[K ∪ y \ kj ],

for any y ∈ R
2 and any c1, . . . , cd+3 such that

∑

j cjkj = y,
∑

j cj = 1
(C-recurrence)

• degree zero: From (10) and (11) we obtain for d = 0

Q[K](x) :=

{

vol2(T )/vol2(〈K〉), x ∈ 〈K〉o,

0, if x /∈ 〈K〉.
(12)

2 A simplex spline basis for the Clough-Tocher

split

In this section we determine and study a basis of C1 cubic simplex splines on
the Clough-Tocher split on a triangle. For fixed x ∈ T we use the simplified
notation

i j

k

� := Q[p
[i]
1 ,p

[j]
2 ,p

[k]
3 ,p

[l]
T
](x), i, j, k, l ∈ N0, i+ j + k + l ≥ 3,

where the notation p
[n]
m denotes that pm is repeated n times.

When one of the integers i, j, k, l is zero we have

Lemma 1 For i, j, k, l ∈ N0, i+j+k+l = d ≥ 0 and x ∈ T with barycentric
coordinates β1, β2, β3 we have

i = 0,
j+1

k+1

�+� =
d!

j!k!l!
(β2 − β1)

j(β3 − β1)
k(3β1)

l

1

1

1 ,

j = 0,
i+1

k+1

�+� =
d!

i!k!l!
(β1 − β2)

i(β3 − β2)
k(3β2)

l

1

1

1 ,

k = 0,
i+1 j+1

�+� =
d!

i!j!l!
(β1 − β3)

i(β2 − β3)
j(3β3)

l

1 1
1 ,

l = 0,
i+1 j+1

k+1

=
d!

i!j!k!
βi1β

j
2β

k
3
1 1

1

= Bd
ijk(x),

(13)

where the constant simplex splines are given by

1

1

1 = 31T1(x),
1

1

1 = 31T2(x),
1 1
1 = 31T3(x),

1 1

1

= 1T (x).

(14)
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Proof: Suppose i = 0. The first equation in (13) holds for d = 0. Suppose
it holds for d−1 and let j+k+ l = d. Let β023j , j = 0, 2, 3 be the barycentric
coordinates of x with respect to T1 = 〈p0,p2,p3〉, where p0 := pT . By the
B-recurrence

j+1

k+1

�+� = β0232 j

k+1

�+� + β0233 j+1

k

�+� + β0230 j+1

k+1

� .

It is easily shown that

β0232 = β2 − β1, β
023
3 = β3 − β1, β

023
0 = 3β1.

Therefore, by the induction hypothesis

j+1

k+1

�+� =
(d− 1)!

j!k!l!
(j + k + l)(β0232 )j(β0233 )k(β0230 )l

1

1

1

Since j + k + l = d we obtain the first equation in (13).
The next two equations in (13) follow similarly using

β0311 = β1 − β2, β
031
3 = β3 − β2, β

031
0 = 3β2,

β0121 = β1 − β3, β
012
2 = β2 − β3, β

012
0 = 3β3.

Using the B-recurrence repeatedly, we obtain the first equality for l = 0.
The values of the constant simplex splines are a consequence of (12). �

Remark 2 For i = 0 we note that the expression d!
j!k!l!(β2 − β1)

j(β3 −

β1)
k(3β1)

l in (13) is a Bernstein polynomial on T1. Similar remarks hold
for j, k = 0.

The set

C1 :=

{

i j

k

� ∈ S
1
3( ) :

i j

k

� 6= 0

}

(15)

of all nonzero simplex splines that can be used in a basis for S13( ) contains
precisely the following 13 simplex splines.

Lemma 3 We have

C1 =

{

i j

k

: i, j, k ∈ N, i+ j + k = 6

}

⋃

{

2 2

1

1 ,
1 2

2

1 ,
2 1

2

1

}

.
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Proof: For l = 0 it follows from Lemma 1 that
i j

k

∈ S
1
3( ) for all

i + j + k = 6. Consider next l = 1. By the local smoothness property,
C1 smoothness implies that each of i, j, k can be at most 2. But then

2 2

1

1 ,
1 2

2

1 ,
2 1

2

1 are the only possibilities. Now if l = 2 then i + j +

k = 4 implies that one of i, j, k must be at least 2 and we cannot have C1

smoothness. Similarly l > 2 is not feasible. �

B
3

300

B
3

201
B

3

111

B
3

102
B

3

012

B
3

021

B
3

210
B
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120
B

3
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B
3

003

S
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S
2

S
1

S
7

S
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S
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S
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S
9
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12

S
3
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S
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Figure 2: The cubic Bernstein basis (left) and the CTS-basis (right), where
B3

111 is replaced by S10, S11, S12.

Recall that S13( ) is a linear space of dimension 12, [1]. Thus, in order to
obtain a possible basis for this space, we need to choose 12 of the 13 elements
in C1. Since C1 contains the 10 cubic Bernstein polynomials we have to

include at least two of
2 2

1

1 ,
1 2

2

1 ,
2 1

2

1 . We also want a symmetric basis

and therefore, we have to include all of them. But then one of the Bernstein
polynomials has to be excluded. To see which one to exclude, we insert the

knot p3 = −p1 − p2 + 3pT into
2 2

1

1 and use the C-recurrence to obtain

2 2

1

1 = −
1 2

2

1 −
2 1

2

1 + 3
2 2

2

, or by (13)

2 2

1

1 +
1 2

2

1 +
2 1

2

1 = 3B3
111(x). (16)

Thus, in order to have symmetry and hopefully obtain 12 linearly indepen-
dent functions, we see that B3

111 is the one that should be excluded.
We obtain the following simplex spline basis for S13( ).
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Theorem 4 (CTS-basis) The 12 simplex splines S1, . . . , S12 , where

Sj(x) := Bj(x), where Bj is given by (7) j = 1, . . . , 9,

S10(x) :=
1

3 2 2

1

1

= (B3
210 −B3

300)1T1 + (B3
120 −B3

030)1T2 + (B3
111 −B3

102 −B3
012 + 2B3

003)1T3

S11(x) :=
1

3 1 2

2

1

= (B3
111 −B3

210 −B3
201 + 2B3

300)1T1 + (B3
021 −B3

030)1T2 + (B3
012 −B3

003)1T3

S12(x) :=
1

3 2 1

2

1

= (B3
201 −B3

300)1T1 + (B3
111 −B3

120 −B3
021 + 2B3

030)1T2 + (B3
102 −B3

003)1T3 .
(17)

form a partition of unity basis for the space S
1
3( ) given by (1). This basis,

which we call the CTS-basis, is the only symmetric simplex spline basis
for S

1
3( ). On the boundary of T the functions S10, S11, S12 have the value

zero, while the elements of {S1, S2, . . . , S9} reduce to zero, or to univariate
Bernstein polynomials.

Proof: By Lemma 1, it follows that the Bernstein polynomials B1, . . . , B9

are cubic simplex splines, and the previous discussion implies that the func-
tions in (17), apart from scaling, are the only candidates for a symmetric
simplex spline basis for S13( ).

We can find the explicit form of
2 2

1

1 using either theB- or C-recurrence

(see definitions at the end of Section 1) . Consider the C-recurrence. Insert-
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ing p1 twice and using p1 = −p2 − p3 + 3pT and (13) we find

2 2

1

1 = −
3 1

1

1 −
3 2
1 + 3

3 2

1

=
4

1

1 +
4 1
1 − 3

4 1

1

−
3 2
1 + 3

3 2

1

= (β1 − β2)
3

1

1

1 + (β1 − β3)
3

1 1
1 − 3β31

1 1

1

− 3(β1 − β3)
2(β2 − β3)

1 1
1 + 9β21β2

1 1

1

= (β1 − β2)
3

1

1

1 + [(β1 − β3)
3 − 3(β1 − β3)

2(β2 − β3)]
1 1
1

+ 3β21(3β2 − β1)
1 1

1

.

(18)

Using (9) and Lemma 1, we can write 3
1 1

1

=
1

1

1 +
1

1

1 +
1 1
1 , so

that

2 2

1

1 = [(β1 − β2)
3 + β21(3β2 − β1)]

1

1

1 + β21(3β2 − β1)
1

1

1

+ [(β1 − β3)
2(β1 − 3β2 + 2β3) + β21(3β2 − β1)]

1 1
1

= (3β21β2 − β31)
1

1

1 + (3β1β
2
2 − β32)

1

1

1

+ (6β1β2β3 − 3β1β
2
3 − 3β2β

2
3 + 2β33)

1 1
1 .

(19)

By symmetry we obtain

1 2

2

1 = (6β1β2β3 − 3β21β2 − 3β21β3 + 2β31)
1

1

1

+ (3β22β3 − β32)
1

1

1 + (3β2β
2
3 − β33)

1 1
1 ,

2 1

2

1 = (3β21β3 − β31)
1

1

1 + (3β1β
2
3 − β33)

1 1
1

+ (6β1β2β3 − 3β1β
2
2 − 3β22β3 + 2β32)

1

1

1 .

(20)

The formulas for S10, S11 and S12 in (17) now follows from (19) and (20)
using (3) and (14).
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By the partition of unity for Bernstein polynomials we find

12
∑

j=1

Sj(x) =
∑

i+j+k=3

B3
ijk(x) = 1, x ∈ T .

It is well known that B3
ijk reduces to univariate Bernstein polynomials

or zero on the boundary of T .
Clearly Sj ∈ C(R2), j = 10, 11, 12, since no edge contains more than

4 knots. This follows from general properties of simplex splines. By the
local support property they must therefore be zero on the boundary. It also
follows that Sj ∈ C1(T ), j = 10, 11, 12, since no interior knot line contains
more than 3 knots.

It remains to show that the 12 functions Sj , j = 1, . . . , 12 are linearly
independent on T . Suppose that

∑12
j=1 cjSj(x) = 0 for all x ∈ T and let

(β1, β2, β3) be the barycentric coordinates of x. On the edge 〈p1,p2〉, where
β3 = 0, the functions Sj , j = 5, . . . 12 vanish, and thus

12
∑

j=1

cjSj(x) = c1B
3
300(x) + c2B

3
210(x) + c3B

3
120(x) + c4B

3
030(x) = 0.

On 〈p1,p2〉 this is a linear combination of linearly independent univariate
Bernstein polynomials and we conclude that c1 = c2 = c3 = c4 = 0. Simi-
larly cj = 0 for j = 5, . . . , 9. It remains to show that S10, S11 and S12 are
linearly independent on T . For x ∈ T o

3 and β3 = 0 we find

∂S10
∂β3

|β3=0 = 6β1β2 6= 0,
∂Sj
∂β3

|β3=0 = 0, j = 11, 12.

We deduce that c10 = 0 and similarly c11 = c12 = 0 which concludes the
proof. �

In Figure 3 we show graphs of the functions S10, S11, S12.

3 Two Marsden identities and representation of

polynomials

We give both a barycentric and a Cartesian Marsden-like identity.

Theorem 5 (Barycentric Marsden-like identity) For u := (u1, u2, u3),
β := (β1, β2, β3) ∈ R

3 with βi ≥ 0, i = 1, 2, 3 and β1 + β2 + β3 = 1 we have

(βTu)3 = u31S1(β) + u21u2S2(β) + u1u
2
2S3(β) + u32S4(β) + u22u3S5(β)

+ u2u
2
3S6(β) + u33S7(β) + u1u

2
3S8(β) + u21u3S9(β)

+ u1u2u3
(

S10(β) + S11(β) + S12(β)
)

.

(21)
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Figure 3: The CTS-basis functions S10, S11, S12 on the triangle
〈(0, 0), (1, 0), (0, 1)〉.

Proof: By the multinomial expansion we obtain

(β1u1 + β2u2 + β3u3)
3 =

∑

i+j+k=3

3!

i!j!k!
(β1u1)

i(β2u2)
j(β3u3)

k

=
∑

i+j+k=3

ui1u
j
2u

k
3B

3
ijk(β).

Using B3
111 = S10 + S11 + S12 and the ordering in Theorem 4 we obtain

(21). �

Corollary 6 For l,m, n ∈ N0 with l + m + n ≤ 3 we have an explicit
representation for lower degree Bernstein polynomials in terms of the CTS-
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basis (17).

Bl+m+n
lmn =

(

3

l +m+ n

)−1
(

(

3

l

)(

0

m

)(

0

n

)

S1 +

(

2

l

)(

1

m

)(

0

n

)

S2

+

(

1

l

)(

2

m

)(

0

n

)

S3 +

(

0

l

)(

3

m

)(

0

n

)

S4 +

(

0

l

)(

2

m

)(

1

n

)

S5

+

(

0

l

)(

1

m

)(

2

n

)

S6 +

(

0

l

)(

0

m

)(

3

n

)

S7 +

(

1

l

)(

0

m

)(

2

n

)

S8

+

(

2

l

)(

0

m

)(

1

n

)

S9 +

(

1

l

)(

1

m

)(

1

n

)

(

S10 + S11 + S12

)

)

,

(22)
where

(

0
0

)

:= 1 and
(

r
s

)

:= 0 if s > r.

Proof: Differentiating, for any d ∈ N0, (β1u1+β2u2+β3u3)
d a total of l,m, n

times with respect to u1, u2, u3, respectively, and setting u1 = u2 = u3 = 1
we find

d!

(d− l −m− n)!
βl1β

m
2 β

n
3

=
∑

i+j+k=d

i(i− 1) . . . (i− l + 1)j . . . (j −m+ 1)k . . . (k − n+ 1)Bd
ijk,

and by a rescaling

Bl+m+n
lmn =

(

d

l +m+ n

)−1
∑

i+j+k=d

(

i

l

)(

j

m

)(

k

n

)

Bd
ijk, l +m+ n ≤ d.

(23)
Using (17) with d = 3, we obtain (22).�

As an example, we find

B1
100 =

1

3

(

3S1 + 2S2 + S3 + S8 + 2S9 + S10 + S11 + S12
)

.

Theorem 7 (Cartesian Marsden-like identity) We have

(1 + xT v)3 =
12
∑

j=1

ψj(v)Sj(x), x ∈ T , v ∈ R
2, (24)

where the dual polynomials in Cartesian form are given by

ψj(v) :=
3
∏

l=1

(1 + dT
j,lv), j = 1, . . . , 12, v ∈ R

2. (25)

14



Here the dual points dj := [dj,1,dj,2,dj,3], are given as follows.











































d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12











































:=











































p1 p1 p1

p1 p1 p2

p1 p2 p2

p2 p2 p2

p2 p2 p3

p2 p3 p3

p3 p3 p3

p1 p3 p3

p1 p1 p3

p1 p2 p3

p1 p2 p3

p1 p2 p3











































. (26)

The domain points p∗
j in (8) are the coefficients of x in terms of the CTS-

basis

x =
12
∑

j=1

p∗
jSj(x), (27)

where p∗
10 = p∗

11 = p∗
12 = pT .

Proof: We apply (21) with β1, β2, β3 the barycentric coordinates of x and
ui = 1 + pT

i v, i = 1, 2, 3. Then

β1u1 + β2u2 + β3u3 = β1 + β2 + β3 + β1p
T
1 v + β2p

T
2 v + β3p

T
3 v = 1 + xTv.

and (24), (25), (26) follow from (21). Taking partial derivatives in (24) with
respect to v,

(

∂v1 , ∂v2
)

(1 + xTv)3 = 3x(1 + xTv)2 =
12
∑

j=1

(

∂v1 , ∂v2
)

ψj(v)Sj(x),

where
(

∂v1 , ∂v2
)

ψj(v) := dj,1(1+dT
j,2v)(1+dT

j,3v)+dj,2(1+dT
j,1v)(1+dT

j,3v)+

dj,3(1 + dT
j,1v)(1 + dT

j,2v). Setting v = 0 we obtain (27). �
Note that the domain point pT for B3

111 has become a triple domain
point for the CTS-basis.

Following the proof of (27) we can give explicit representations of all the
monomials xrys spanning P3. We do not give details here.
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4 Three quasi-interpolants

We consider three quasi-interpolants on S
1
3( ). They all use functionals

based on point evaluations and the third one will be used to estimate the
L∞ condition number of the CTS-basis.

To start, we consider the following polynomial interpolation problem on
T . Find g ∈ P3 such that g(p∗

i ) = fi, where f := [f1, . . . , f10]
T is a vector

of given real numbers and the p∗
i given by (8) are the domain points for the

cubic Bernstein basis.
Using the ordering (7), we write g in the form

∑10
j=1 cjBj and obtain the

linear system
10
∑

j=1

cjBj(p
∗
i ) = fi, i = 1, . . . , 10,

or in matrix formAc = f for the unknown coefficient vector c := [c1, . . . , c10]
T .

Since B10(p
∗
i ) = B3

111(p
∗
i ) = 0 for i = 1, . . . , 9 the coefficient matrix A is

block triangular

A =

[

A1 0
A2 A3

]

, (28)

and if A1 and A3 are nonsingular then

A−1 =

[

A−1
1 0

−A−1
3 A2A

−1
1 A−1

3

]

=

[

B1 0
B2 B3

]

. (29)

Using the barycentric form of the domain points in (8) we find A2 =
[1, 3, 3, 1, 3, 3, 1, 3, 3]/27, A3 = B3

111(
1
3 ,

1
3 ,

1
3) =

2
9 ,

A1 :=
1

27





























27 0 0 0 0 0 0 0 0
8 12 6 1 0 0 0 0 0
1 6 12 8 0 0 0 0 0
0 0 0 27 0 0 0 0 0
0 0 0 8 12 6 1 0 0
0 0 0 1 6 12 8 0 0
0 0 0 0 0 0 27 0 0
1 0 0 0 0 0 8 12 6
8 0 0 0 0 0 1 6 12





























∈ R
9×9 (30)
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and

B1 := A−1
1 =

1

6





























6 0 0 0 0 0 0 0 0
−5 18 −9 2 0 0 0 0 0
2 −9 18 −5 0 0 0 0 0
0 0 0 6 0 0 0 0 0
0 0 0 −5 18 −9 2 0 0
0 0 0 2 −9 18 −5 0 0
0 0 0 0 0 0 6 0 0
2 0 0 0 0 0 −5 18 −9
−5 0 0 0 0 0 2 −9 18





























,

B3 = [
9

2
], B2 := −B3A2B1 =

1

12
[4,−9,−9, 4,−9,−9, 4,−9,−9].

(31)

Define Q̃I
P
: C(T ) → P3 by

Q̃I
P
(f) :=

10
∑

i=1

λPi (f)Bi, λPi (f) :=
10
∑

j=1

αi,jf(p
∗
j ), (32)

where the matrix α := A−1 has elements αi,j in row i and column j, i, j =
1, . . . , 10. We have

λPi (Bj) =
10
∑

k=1

αi,kBj(p
∗
k) =

10
∑

k=1

αi,kak,j = δi,j , i, j = 1, . . . , 10.

It follows that Q̃IP (g) = g for all g ∈ P3. Since Bj = Sj , j = 1, . . . , 9 and
B10 = B3

111 = S10 + S11 + S12 the quasi-interpolant

QIP : C(T ) → S
1
3( ), QIP (f) :=

12
∑

i=1

λPi (f)Si, λP11 = λP12 = λP10, (33)

where λPi (f) is given by (32), i = 1, . . . , 10, reproduces P3. Moreover, since
for any f ∈ C(T ) and x ∈ T

|QIP (f)(x)| ≤ max
1≤i≤12

|λPi (f)|
12
∑

i=1

Si(x) = max
1≤i≤10

|λPi (f)|,

we obtain

‖QIP (f)‖L∞(T ) ≤ ‖α‖∞‖f‖L∞(T ) = 10‖f‖L∞(T ),

17



independently of the geometry of T .
Using the construction in [8], we can derive another quasi-interpolant

which also reproduces P3. It uses more points, but has a slightly smaller
norm. Consider the map P : C(T ) → S

1
3(T ) defined by P (f) =

∑12
ℓ=1Mℓ(f)Sℓ,

where

Mℓ(f) :=
1

6

(

f(dℓ,1) + f(dℓ,2) + f(dℓ,3)
)

+
9

2
f(p∗

ℓ )

−
4

3

(

f
(dℓ,1 + dℓ,2

2

)

+ f
(dℓ,1 + dℓ,3

2

)

+ f
(dℓ,2 + dℓ,3

2

)

)

.

Here the dℓ,m are the dual points given by (26) and the p∗
ℓ are the domain

points given by (27). Note that this is an affine combination of function
values of f .

We have tested the convergence of the quasi-interpolant, sampling data
from the function f(x, y) = e2x+y + 5x + 7y on the triangle A = [0, 0],
B = h ∗ [1, 0], C = h ∗ [0.2, 1.2] for h ∈ {0.05, 0.04, 0.03, 0.02, 0.01}. The
following array indicates that the error: ‖f − P (f)‖L∞(T ), is O(h4).

h 0.05 0.04 0.03 0.02 0.01

error/h4 0.0550 0.0547 0.0543 0.0540 0.0537

Using a standard argument the following Proposition shows that the
error is indeed O(h4) for sufficiently smooth functions.

Proposition 8 The operator P is a quasi-interpolant that reproduces P3.
For any f ∈ C(T )

‖P (f)‖L∞(T ) ≤ 9‖f‖L∞(T ), (34)

independently of the geometry of T . Moreover,

‖f − P (f)‖L∞(T ) ≤ 10 inf
g∈P3

‖f − g‖L∞(T ). (35)

Proof: Since d10 = d11 = d12 and B3
111 = S10 + S11 + S12, B

3
ijk = Sℓ

for (i, j, k) 6= (1, 1, 1) and some ℓ, we obtain P (f) =
∑

i+j+k=3 M̄ijk(f)B
3
ijk

where M̄ijk = Mℓ for (i, j, k) 6= (1, 1, 1) and corresponding ℓ and M̄111 =
3M10.

To prove that P reproduces polynomials up to degree 3, i.e., P (B3
ijk) =

B3
ijk, whenever i + j + k = 3, it is sufficient to prove the result for B3

300,

18



B3
210, B

3
111, using the symmetries. From the following initial values,

p B3
300(p) B3

210(p) B3
111(p)

p1 1 0 0

(2p1 + p2)/3 8/27 4/9 0

(p1 + 2p2)/3 1/27 2/9 0

(p1 + 2p3)/3 1/27 0 0

(2p1 + p3)/3 0 0 0

(p1 + p2 + p3)/3 1/27 1/9 2/9

(p1 + p2)/2 1/8 3/8 0

(p1 + p3)/2 1/8 0 0

(36)

and the fact that the three polynomials are zero at p2,
2p2 + p3

3
,
p2 + 2p3

3
,

p3,
p2 + p3

2
, it is easy to compute that

M̄300(B
3
300) = 1, M̄300(B

3
ijk) = 0 for (i, j, k) 6= (3, 0, 0),

M̄210(B
3
210) = 1, M̄210(B

3
ijk) = 0 for (i, j, k) 6= (2, 1, 0),

M̄111(B
3
111) = 1, M̄111(B

3
ijk) = 0 for (i, j, k) 6= (1, 1, 1).

Therefore, by a standard argument, P is a quasi-interpolant that repro-
duces P3. Since the sum of the absolute values of the coefficients defining
Mℓ(f) is equal to 9, another standard argument shows (34) and (35). �

The operators QIP and P do not reproduce the whole spline space
S
1
3( ). Indeed, since λP10(B10) =M10(B10) = 1, we have λP10(Sj) =M10(Sj) =

1
3 , j = 10, 11, 12.

To give un upper bound for the condition number of the CTS-basis
we need a quasi-interpolant which reproduces the whole spline space. We
again use the inverse of the coefficient matrix of an interpolation problem to
construct such an operator. We need 12 interpolation points and a natural
choice is to use the first 9 cubic Bernstein domain points p∗

j , j = 1, . . . , 9 and
split the barycenter p∗

10 = pT into three points. After some experimentation
we redefine p∗

10 and choose p∗
10 := (3, 3, 1)/7, p∗

11 := (3, 1, 3)/7 and p∗
12 :=

(1, 3, 3)/7. The problem is to find s =
∑12

j=1 cjSj such that s(p∗
i ) = fi,

i = 1, . . . , 12. The coefficient matrix for this problem has again the block
tridiagonal form (28), where A1 ∈ R

9×9 and B1 := A−1
1 are given by (30)

and (31) as before. Moreover, using the formulas in Theorem 4 we find

A3 = [Sj(p
∗
i )]

12
i,j=10 =

1

343





38 8 8
8 8 38
8 38 8



 ∈ R
3×3.
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This matrix is nonsingular with inverse

B3 := A−1
3 =









7889
810 −686

405 −686
405

−686
405 −686

405
7889
810

−686
405

7889
810 −686

405









.

With A2 = [Bj(p
∗
i )]

12,9
i=10,j=1 we find

A2 =
1

343





27 81 81 27 27 9 1 9 27
27 27 9 1 9 27 27 81 81
1 9 27 27 81 81 27 27 9



 ∈ R
3×9,

and then (29) implies

αS := A−1 =

[

B1 0
B2 B3

]

,

where

B2 = −B3A2B1 =









643
810 −191

60 −191
60

643
810 −83

60
79
60 −178

405 −83
60

79
60

−178
405

79
60 −83

60
643
810 −191

60 −191
60

643
810

79
60 −83

60

643
810 −83

60
79
60 −178

405
79
60 −83

60
643
810 −191

60 −191
60









.

It follows that the quasi-interpolant QI given by

QI : C(T ) → S
1
3( ), QI(f) :=

12
∑

i=1

λSi (f)Si, λSi (f) =

12
∑

j=1

αS
i,jf(p

∗
j ),

(37)
is a projector onto the spline space S

1
3( ). In particular

s :=
12
∑

i=1

ciSi =⇒ ci = λSi (s), i = 1, . . . , 12. (38)

The quasi-interpolant (37) can be used to show the L∞ stability of the
CTS-basis. For this we prove that the condition number is independent of
the geometry of the triangle.

We define the ∞-norm condition number of the CTS-basis on T by

κ∞(T ) := max
c6=0

‖bTc‖L∞(T )

‖c‖∞
max
c6=0

‖c‖∞

‖bT c‖L∞(T )

,

where bT c :=
∑12

j=1 cjSj ∈ S
1
3( ).
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Theorem 9 For any triangle T we have κ∞(T ) < 27.

Proof: Since the Sj form a nonnegative partition of unity it follows that
maxc 6=0‖b

T c‖L∞(T )/‖c‖∞ = 1.

If s =
∑12

j=1 cjSj = bT c then by (38) |ci| = |λSi (b
T c)| ≤ ‖αS‖∞‖bT c‖L∞(T ).

Therefore,
‖c‖∞

‖bT c‖L∞(T )

≤ ‖αS‖∞ = 27−
32

405
,

and the upper bound κ∞ < 27 follows. �

5 C
0 and C

1–continuity

In the following, we derive conditions to ensure C0 and C1 continuity across
an edge between two triangles. The conditions are very similar to the clas-
sical conditions for continuity of Bernstein polynomials across an edge.

Theorem 10 Let s1 =
∑12

j=1 cjSj and s2 =
∑12

j=1 djS̃j be defined on the

triangle T := 〈p1,p2,p3〉 and T̃ := 〈p1,p2, p̃3〉, respectively, see Figure 4.

The function s =

{

s1 on T

s2 on T̃
is continuous on T ∪ T̃ if

d1 = c1, d2 = c2, d3 = c3, d4 = c4. (39)

Moreover, s ∈ C1(T ∪ T̃ ) if in addition to (39) we have

d5 = γ1c3 + γ2c4 + γ3c5, d9 = γ1c1 + γ2c2 + γ3c9, d10 = γ1c2 + γ2c3 + γ3c10.
(40)

where γ1, γ2, γ3 are the barycentric coordinates of p̃3 with respect to T .

Proof: Consider s1 on the edge 〈p1,p2〉. On that edge only S1, S2, S3, S4
can be nonzero and they reduce to linearly independent univariate Bern-
stein polynomials. If s ∈ C(T ) then S̃1, S̃2, S̃3, S̃4 must reduce to the same
Bernstein polynomials on 〈p1,p2〉. But then (39) follows from linear inde-
pendence.

Suppose next (39) holds and s ∈ C1(T ∪ T̃ ). By the continuity property
we see that Sj , j = 6, 7, 8, 11, 12 are zero and have zero cross boundary
derivatives on 〈p1,p2〉 since they have at most 3 knots on that edge. We take
derivatives in the direction u := p̃3 − p1 using the A-recurrence (defined at
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Figure 4: C1–continuity and splines components

the end of Section 1) with a := (γ1− 1, γ2, γ3, 0) for s1 and a := (−1, 0, 1, 0)
for s2. We find with x ∈ 〈p1,p2〉

1

3
∂uS1(x) :=

1

3
∂u

4 1

1

= (γ1 − 1)
3 1

1

= (γ1 − 1)B2
200(x),

1

3
∂uS2(x) :=

1

3
∂u

3 2

1

= (γ1 − 1)
2 2

1

+ γ2
3 1

1

= (γ1 − 1)B2
110(x) + γ2B

2
200(x),

1

3
∂uS3(x) :=

1

3
∂u

2 3

1

= (γ1 − 1)B2
020(x) + γ2B

2
110(x),

1

3
∂uS4(x) :=

1

3
∂u

1 4

1

= γ2B
2
020(x),

1

3
∂uS5(x) :=

1

3
∂u

1 3

2

= γ2B
2
011(x) + γ3B

2
020(x),

1

3
∂uS9(x) :=

1

3
∂u

3 1

2

= (γ1 − 1)B2
101(x) + γ3B

2
200(x),

1

3
∂uS10(x) :=

1

9
∂u

2 2

1

1 =
1

3
(γ1 − 1)

1 2

1

1 +
1

3
γ2

2 1

1

1 +
1

3
γ3

2 2
1

=
1

3
γ3

2 2
1 = γ3B

2
110(x).

(41)

The last equality follows from (13) since β3 = 0 on 〈p1,p2〉 so that
1 2

1

1 =

2 1

1

1 = 0 and
2 2
1 = 3B2

110(x). Consider next S̃j . By the same argument

as for Sj , we see that S̃j , j = 6, 7, 8, 11, 12 are zero and have zero cross
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boundary derivatives on 〈p1,p2〉. We find for x ∈ 〈p1,p2〉

1

3
∂u
[

S̃1, S̃2, S̃3, S̃4, S̃5, S̃9, S̃10
]

(x) =
[

−B̃2
200,−B̃

2
110,−B̃

2
020, 0, B̃

2
020,−B̃

2
101+B̃

2
200, B̃

2
110

]

(x)

We note that on 〈p1,p2〉, the polynomials B2
101, B̃

2
101, B

2
011, B̃

2
011 vanish and

B2
ij0 = B̃2

ij0. To obtain C1 smoothness, we need ∂uS̃j = ∂uSj for j =
1, 2, 3, 4, 5, 9, 10 on 〈p1,p2〉. Using di = ci, i = 1, 2, 3, 4 we then obtain

1

3

(

∂us1(x)− ∂us2(x)
)

=
(

c1(γ1 − 1) + c2γ2 + c9γ3 + c1 − d9
)

B2
200(x)

+
(

c2(γ1 − 1) + c3γ2 + c10γ3 + c2 − d10
)

B2
110(x)

+
(

c3(γ1 − 1) + c4γ2 + c5γ3 + c3 − d5
)

B2
020(x) = 0.

(42)
By linear independence we obtain the formulas for d5,d9,d10. �

A

B
C

D

Figure 5: C1 smoothness

In Figure 5, we illustrate C1 smoothness by connecting two triangles
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A,B,C and A,B,D with A = [0, 0], B = [1, 0], C = [0.2, 0.8], D =
[0.6,−0.4].

6 The Hermite basis

The classical Hermite interpolation problem on the Clough-Tocher split is
to interpolate values and gradients at vertices and normal derivatives at the
midpoint of edges, see Figure 1.

Figure 6: The Hermite basis functions H1, H2, H3, H10 on the unit triangle.

These interpolation conditions can be described by the linear functionals

ρ(f) = [ρ1(f), . . . , ρ12(f)]
T := [f(p1), ∂1,0f(p1), ∂0,1f(p1), f(p2), ∂1,0f(p2),

∂0,1f(p2), f(p3), ∂1,0f(p3), ∂0,1f(p3), ∂n1
f(p5), ∂n2

f(p6), ∂n3
f(p4)]

T ,

where p4,p5,p6, are the midpoints on the edges 〈p1,p2〉, 〈p2,p3〉, 〈p3,p1〉,
respectively, and ∂nj

f is the derivative in the direction of the unit normal to
that edge in the direction towards pj . We let pj = (xj , yj) be the coordinates

of each point. The coefficient vector c := [c1, . . . , c12]
T of the interpolant

g :=
∑12

j=1 cjSj is solution of the linear system

Ac = ρ(f), where A ∈ R
12×12 with ai,j := ρi(Sj). (43)

Let H1, . . . , H12 be the Hermite basis for S
1
3( ) defined by ρi(Hj) =

δi,j . The matrix A transforms the Hermite basis to the CTS-basis. Since a
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basis transformation matrix is always nonsingular, we have

[S1, . . . , S12] = [H1, . . . , H12]A, [H1, . . . , H12] = [S1, . . . , S12]A
−1. (44)

To find the elements ρi(Sj) of A we define for i, j, k = 1, 2, 3

νij := ‖pij‖2, pij := pi − pj , xij := xi − xj , yij := yi − yj ,

νijk :=
pT
i,jpj,k

νij
, for i 6= j, δ :=

∣

∣

∣

∣

∣

∣

1 1 1
x1 x2 x3
y1 y2 y3

∣

∣

∣

∣

∣

∣

.
(45)

We note that νijk is the length of the projection of pj,k in the direction of
pi,j and that δ is twice the signed area of T .

By the definition of the unit normals and the chain rule for j = 1, . . . , 12
we find

∂1,0Sj = (y23∂β1
Sj + y31∂β2

Sj + y12∂β3
Sj)/δ,

∂0,1Sj = (x32∂β1
Sj + x13∂β2

Sj + x21∂β3
Sj)/δ,

∂n1
Sj = (y23∂1,0Sj + x32∂0,1Sj)/ν32 = (ν32∂β1

Sj + ν231∂β2
Sj + ν321∂β3

Sj)/δ,

∂n2
Sj = (y31∂1,0Sj + x13∂0,1Sj)/ν31 = (ν132∂β1

Sj + ν31∂β2
Sj + ν312∂β3

Sj)/δ,

∂n3
Sj = (y12∂1,0Sj + x21∂0,1Sj)/ν21 = (ν123∂β1

Sj + ν213∂β2
Sj + ν21∂β3

Sj)/δ.

This leads to

A :=

[

A1 0
A2 A3

]

, with A1 ∈ R
9×9, A2 ∈ R

3×9, A3 ∈ R
3×3,

where

A1 :=
3

δ





























δ/3 0 0 0 0 0 0 0 0
y23 y31 0 0 0 0 0 0 y12
x32 x13 0 0 0 0 0 0 x21
0 0 0 δ/3 0 0 0 0 0
0 0 y23 y31 y12 0 0 0 0
0 0 x32 x13 x21 0 0 0 0
0 0 0 0 0 0 δ/3 0 0
0 0 0 0 0 y31 y12 y23 0
0 0 0 0 0 x13 x21 x32 0





























,

the rows of A2 are given by

A2(1) :=
3

4δ

[

0, 0, ν32, ν231, ν231 − ν32, ν321 − ν32, ν321, ν32, 0
]

,

A2(2) :=
3

4δ

[

ν132, ν31, 0, 0, 0, ν31, ν312, ν312 − ν31ν132 − ν31
]

,

A2(3) :=
3

4δ

[

ν123, ν123 − ν21, ν213 − ν21, ν213, ν21, 0, 0, 0, ν21
]

,
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and

A3 :=
3

2δ





0 ν32 0
0 0 ν31
ν21 0 0



 .

We find

A−1 :=

[

B1 0
B2 B3

]

= [bi,j ]
12
i,j=1,

where

B1 := A−1
1 =

1

3





























3 0 0 0 0 0 0 0 0
3 x21 y21 0 0 0 0 0 0
0 0 0 3 x12 y12 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 3 x32 y32 0 0 0
0 0 0 0 0 0 3 x23 y23
0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 x13 y13
3 x31 y31 0 0 0 0 0 0





























∈ R
9×9,

B3 := A−1
3 =

2δ

3





0 0 ν−1
21

ν−1
32 0 0

0 ν−1
31 0



 ∈ R
3×3,

and the rows of B2 = −B3A2B1 ∈ R
3×9 are given by

B2(1) :=
1

6ν21

[

− 6ν123, x12ν123 + ν21x23, y12ν123 + ν21y23,−6ν213,

x21ν213 + ν21x13, y21ν213 + ν21y13, 0, 0, 0
]

,

B2(2) :=
1

6ν32

[

0, 0, 0,−6ν231, x23ν231 + ν32x31, y23ν231 + ν32y31,−6ν321,

x23ν231 + ν32x21 + ν32x23, y23ν231 + ν32y21 + ν32y23
]

,

B2(3) :=
1

6ν31

[

− 6ν132, x13ν132 + ν31x32, y13ν132 + ν31y32, 0, 0, 0,

− 6ν312, x31ν312 + ν31x12, y31ν312 + ν31y12
]

.

As an example, on the unit triangle (p1,p2,p3) = ((0, 0), (1, 0), (0, 1)) we
find

B2 =





1 1
3 −1

6 0 0 −1
6 0 0 0

0 0 0 1
2 − 1

12
1
4

1
2

1
4 − 1

12
1 −1

6
1
3 0 0 0 0 −1

6 0



 .
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Some of the Hermite basis functions are shown in Figure 6.
We have also tested the convergence of the Hermite interpolant, sampling

again data from the function f(x, y) = e2x+y + 5x + 7y on the triangle
A = [0, 0], B = h∗[1, 0], C = h∗[0.2, 1.2] for h ∈ {0.05, 0.04, 0.03, 0.02, 0.01}.
The following array indicates that the error: ‖f −H(f)‖L∞(T ) is O(h4).

h 0.05 0.04 0.03 0.02 0.01

error/h4 0.1650 0.1640 0.1630 0.1620 0.1610

7 Examples

Several examples have been considered for scattered data on the CT-split,
see for example [4, 9]. Here, we consider a triangulation with vertices p1 =
(0, 0), p2 = (1, 0), p3 = (3/2, 1/2), p4 = (−1/2, 1), p5 = (1/4, 3/4), p6 =
(3/2, 3/2), p7 = (1/2, 2) and triangles T1 := 〈p1,p2,p5〉, T2 := 〈p2,p3,p5〉,
T3 := 〈p4,p1,p5〉, T4 := 〈p3,p6,p5〉, T5 := 〈p6,p4,p5〉, T6 := 〈p4,p6,p7〉,.
We divide each of the 6 triangles into 3 subtriangles using the Clough-Tocher
split. We then obtain a space of C1 piecewise polynomials of dimension
3V + E = 3 × 7 + 12 = 33, where V is the number of vertices and E the
number of edges in the triangulation. We can represent a function s in this
space by either using the Hermite basis or using CTS-splines on each of the
triangles and enforcing the C1 continuity conditions. The function s on T1
depends on 12 components, while the C1–continuity across the edges gives
only 5 free components for T2,T3 and T4. Closing the 1-cell at p5 gives only
one free component for T5 and 5 free components for T6 , Figure 7 left.

In the following graph, Figure 7, right, once the 12 first components on
T1 were chosen, the other free ones are set to zero. Then, in Figure 8, we
have plotted the Hermite interpolant of the function f(x, y) = e2x+y+5x+7y
and gradients using the CTS-splines.
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