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Abstract

Hermite subdivision schemes act on vector valued data that is not only considered as

functions values of a vector valued function from R to R
r , but as evaluations of r consec-

utive derivatives of a function. This intuition leads to a mild form of level dependence of

the scheme. Previously, we have proved that a property called spectral condition or sum

rule implies a factorization in terms of a generalized difference operator that gives rise to

a “difference scheme” whose contractivity governs the convergence of the scheme. But

many convergent Hermite schemes, for example, those based on cardinal splines, do not

satisfy the spectral condition. In this paper, we generalize the property in a way that pre-

serves all the above advantages: the associated factorizations and convergence theory.

Based on these results, we can include the case of cardinal splines in a systematic way

and are also able to construct new types of convergent Hermite subdivision schemes.

Keywords: Taylor operator Hermite subdivision spectral condition polynomial chain.

1 Introduction

Subdivision schemes, as established in [1], are efficient tools for building curves and surfaces

with applications in design, creation of images and motion control. For vector subdivision

schemes, cf. [8, 10, 18], it is not so straightforward to prove more than the Hölder regularity

of the limit function, due to the more complex nature of the underlying factorizations. On

the other hand, Hermite subdivision schemes [7, 11, 12, 13, 9] produce function vectors that

consist of consecutive derivatives of a certain function, so that the notion of convergence

automatically includes regularity of the leading component of the limit. Such schemes have

even been considered also on manifolds recently [19] and have also been used for wavelet

constructions [5]. While vector subdivision schemes are quite well–understood, nevertheless

there are still surprisingly many open questions left in Hermite subdivision. In particular, a

characterization of convergence in terms of factorization and contractivity is still missing as
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it is known in the scalar case: a subdivision scheme is convergent if and only if it can be fac-

torized by means of difference operators and the resulting difference scheme is contractive.

In previous papers [6, 15, 16], we established an equivalence between a so–called spectral

condition and operator factorizations that transform a Hermite scheme into a vector scheme

for which analysis tools are available. Under this transformation, the usual convergence of

the vector subdivision scheme implies convergence for the Hermite scheme and thus regu-

larity of the limit function. It was even conjectured for some time that the spectral condition,

sometimes also called the sum rules [4, 12] of the Hermite subdivision scheme, might be nec-

essary for convergence. Already in [14] this was relaxed to some extent by considering proper

similarity transforms of the mask that gave slightly generalized sum rules.

In this paper we show, among others results, that this conjecture does not hold true. We

define a new set of significantly more general spectral conditions, called spectral chains, that

widely generalize the classical spectral condition from [6] and show that these spectral condi-

tions are more or less equivalent to the existence of a factorization with respect to respective

generalized Taylor operators and allow for a description of convergence by means of contrac-

tivity. Indeed, we conjecture that these factorization can be used to eventually characterized

the convergence of Hermite subdivision schemes by means of contractive different schemes.

We then define a process that allows us to construct Hermite subdivision schemes of arbi-

trary regularity with guaranteed convergence and, in particular, give examples of convergent

Hermite subdivision schemes that do not satisfy the spectral condition. In addition, our new

method can be applied to an example based on B–splines and their derivatives which was

one of the first examples of a convergent Hermite subdivision scheme that does not satisfy

the spectral condition, [14].

The paper is organized as follows: after introducing some basic notation and the con-

cept of convergent vector and Hermite subdivision schemes, we introduce the new concept

of chains and generalized Taylor operators in Section 4 and use them for the factorization of

subdivision operators in Section 4. These results allow us to extend the known results about

the convergence of the Hermite subdivision schemes to this more general case in Section 5.

Section 6 is devoted to the construction of a convergent Hermite subdivision scheme emerg-

ing from a properly constructed contractive vector subdivision scheme by reversing the fac-

torization process, even in the generality provided by generalized Taylor operators. Finally,

we give some examples of the results of such constructions in Section 7, and also provide a

new approach for the aforementioned spline case.

2 Notation and fundamental concepts

Vectors in R
r , r ∈N, will generally be labeled by lowercase boldface letters: y =

[
y j

]
j=0,...,r−1

or y =
[

y ( j )
]

j=0,...,r−1, where the latter notation is used to highlight the fact that in Hermite

subdivision the components of the vectors correspond to derivatives. Matrices in R
r×r will be

written as uppercase boldface letters, such as A =
[
a j k

]
j ,k=0,...,r−1

. The space of polynomials

in one variable of degree at most n will be written as Πn , with the usual convention Π−1 = {0},

while Π will denote the space of all polynomials. Vector sequences will be considered as

functions from Z to R
r and the vector space of all such functions will be denoted by ℓ(Z,Rr )
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or ℓr (Z). For y(·) ∈ ℓ(Z,Rr ), the forward difference is defined as ∆y(α) := y(α+1)−y(α), α ∈Z,

and iterated to ∆
i+1 y :=∆

(
∆

i y
)
=∆

i y(·+1)−∆
i y(·), i ≥ 0.

We use 0 to indicate zero vectors and matrices. If we want to highlight the dimension of

the object, we will use subscript 0d , but to avoid too cluttered notation, we will often drop

them if the size of the object is clear from the context. Moreover, we will use the convenient

Matlab notation A j : j ′,k:k ′ and a j : j ′ to denote submatrices and subvectors.

Given a finitely supported sequence of matrices A = (A(α))α∈Z ∈ ℓr×r (Z), called the mask

of the subdivision scheme, we define the associated stationary subdivision operator

S A : c 7→
∑

β∈Z

A(·−2β)c(β), c ∈ ℓr (Z).

The iteration of subdivision operators S An
, n ∈N, is called a subdivision scheme and consists

of the successive applications of level-dependent subdivision operators, acting on vector val-

ued data, S An
: ℓr (Z) → ℓr (Z), defined as

c n+1(α) = S An
c n(α) :=

∑

β∈Z

An

(
α−2β

)
c n(β), α ∈Z, c ∈ ℓr (Z) . (1)

An important algebraic tool for stationary subdivision operators is the symbol of the mask,

which is the matrix valued Laurent polynomial

A∗(z) :=
∑

α∈Z

A(α) zα, z ∈C\ {0}. (2)

We will focus our interest on two kinds of such schemes, the first one being “traditional” vec-

tor subdivision schemes in the sense of [1], where An is independent of n, i.e., An(α) = A(α)

for any α ∈Z and any n ≥ 0. In the following, such schemes for which an elaborate theory of

convergence exists, will simply be called a vector scheme. Their convergence is defined in the

following way.

Definition 1 Let S A : ℓr (Z) → ℓr (Z) be a vector subdivision operator. The operator is C p –

convergent, p ≥ 0, if for any data g ∈ ℓr (Z) and corresponding sequence of refinements g n =

Sn
A g , g 0 := g , there exists a function ψg ∈ C p (R,Rr ) such that for any compact K ⊂ R there

exists a sequence εn with limit 0 that satisfies

max
α∈Z∩2n K

∥∥g n(α)−ψg

(
2−nα

)∥∥
∞

≤ εn . (3)

As the second type of, now even level–dependent, schemes we consider the Hermite scheme

where An(α) = D−n−1 A(α)Dn forα ∈Z and n ≥ 0 with the diagonal matrix D :=




1
1
2

. . .
1

2d




.

In this case r = d +1 and for k = 0, . . . ,d the k-th component of c n(α) corresponds to an ap-

proximation of the k-th derivative of some function ϕn at α2−n . Starting from an initial se-

quence c 0, a Hermite scheme can be rewritten

Dn+1 c n+1(α) = Dn+1 S ADnc n(α) =
∑

β∈Z

A
(
α−2β

)
Dn c n(β), α ∈Z, n ≥ 0. (4)
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Convergence of Hermite schemes is a little bit more intricate and defined as follows.

Definition 2 Let A ∈ ℓ(d+1)×(d+1)(Z) be a mask and HA the associated Hermite subdivision

scheme on ℓd+1(Z) as defined in (4). The scheme is convergent if for any data f 0 ∈ ℓd+1(Z)

and the corresponding sequence of refinements f n = [ f (0)
n , . . . , f (d)

n ]T , there exists a function

Φ = [φi ]0≤i≤d ∈ C
(
R,Rd+1

)
such that for any compact K ⊂ R there exists a sequence εn with

limit 0 which satisfies

max
0≤i≤d

max
α∈Z∩2n K

∣∣∣ f (i )
n (α)−φi

(
2−nα

)∣∣∣≤ εn . (5)

The scheme HA is said to be C p –convergent with p ≥ d if moreover φ0 ∈C p (R,R) and

φ(i )
0 =φi , 0 ≤ i ≤ d .

Remark 3 Since the intuition of Hermite subdivision schemes is to iterate on function values

and derivatives, it usually only makes sense to consider C p –convergence for p ≥ d. Note, how-

ever, that the case p > d leads to additional requirements.

The (classical) spectral condition of a subdivision operator has been introduced in [6]. It re-

quests that there exist polynomials p j ∈Π j , j = 0, . . . ,d , such that

S A




p j

p ′
j

...

p(d)
j



= 2− j




p j

p ′
j

...

p(d)
j




, j = 0, . . . ,d . (6)

This spectral condition is a special case of a spectral chain that will be defined in Definition 21.

3 Generalized Taylor operators and chains

In this section, we introduce the concept of generalized Taylor operators and show that they

form the basis of symbol factorizations. The first definition concerns vectors of almost monic

polynomials of increasing degree.

Definition 4 By Vd we denote the set of all vectors v of polynomials in Πd with the property

that

v =




vd

...

v0


 , v j =

1

j !
(·) j

+u j ∈Π j , u j ∈Π j−1. (7)

A vector in Vd thus consists of polynomials v j of degree exactly j whose leading coefficient is

normalized to 1
j !

, and the remaining part of the polynomial v j of lower degree is denoted by u j .

Note that in (7) we always have v0 = 1 and u0 = 0. Also keep in mind that the vectors v are

indexed in a reversed order, but referring directly to the degree of the object, this notion is

more comprehensible.
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We will use the convenient notation of Pochhammer symbols (·) j ∈ Π j , j ≥ 0, in the fol-

lowing way:

(·)0 := 1, (·) j :=
j−1∏

k=0

(·−k), j ≥ 1, and [·] j :=
1

j !
(·) j , j ≥ 0. (8)

These polynomials satisfy

∆(·) j = j (·) j−1, ∆[·] j = [·] j−1. (9)

Both
{
(·)0, . . . , (·) j

}
and

{
[·]0, . . . , [·] j

}
are bases of Π j and allow us to write the Newton interpo-

lation formula of degree d at 0, . . . ,d in the form

x j
=

j∑

k=0

1

k !

(
∆

k (·) j
)

(0)(x)k =

j∑

k=0

(
∆

k (·) j
)

(0)[x]k ;

then, since ∆
j (·) j = j !, we have that

1

j !
(·) j

= [·] j +

j−1∑

k=0

(
∆

k (·) j
)

(0)

j !
[x]k

which implies that

v ∈Vd ⇔ v j = [·] j +u j , u j ∈Π j−1 j = 0, . . . ,d . (10)

We will use this form in the future to write each v ∈Vd as

v =




[·]d

...

[·]0


+u. (11)

Generalizing the Taylor operators operating on vector functions R→ R
d+1 introduced in [6,

15], we define the following concept.

Definition 5 A generalized incomplete Taylor operator is an operator of the form

Td :=




∆ −1 ∗ . . . ∗

. . .
. . .

. . .
...

. . .
. . . ∗

∆ −1

1




=

[
∆I

1

]
+

[
t j k

]
j ,k=0,...,d

, (12)

where t j , j+1 = −1 and t j k = 0 for k ≤ j . In the same way, the generalized complete Taylor

operator is of the form

T̃d :=




∆ −1 ∗ . . . ∗

. . .
. . .

. . .
...

. . .
. . . ∗

∆ −1

∆




=∆I +
[
t j k

]
j ,k=0,...,d

. (13)
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Remark 6 The Taylor operator becomes generalized for d ≥ 2, otherwise we simply recover the

classical case, see Example 16.

Lemma 7 Let v := [vd , . . . , v0]T be a vector of polynomials in Π
d+1 with v0 = 1. Then v ∈Vd if

and only if there exists a generalized complete Taylor operator T̃d such that T̃d v = 0.

Proof: For “⇐” suppose that T̃d v = 0 and let us prove by induction on j = 0, . . . ,d that v j =

[·] j +u j for some appropriate u j ∈ Π j−1. The assumption v0 = 1 ensures that for j = 0 by

simply setting u0 = 0. Now, for 0 ≤ j < d , we assume that v j+1 is of degree m ≥ 0 and write it

in the basis {[·]0, . . . , [·]m} as

v j+1 =

m∑

k=0

ck [·]k =

m∑

k= j+2

ck [·]k + c j+1[·] j+1 +q,

with q ∈Π j , hence ∆q ∈Π j−1. By induction hypothesis, we have that v j = [·] j +u j , u j ∈Π j−1

and vk ∈Πk for k = 0, . . . , j −1. Then T̃d v = 0 implies at row d − j −1 that

0 = ∆v j+1 − v j +

j−1∑

k=0

td− j−1,d−k vk

=

m∑

k= j+2

ck [·]k−1 + c j+1[·] j +∆q − [·] j −u j +

j−1∑

k=0

td− j−1,d−k vk

=

m−1∑

k= j+1

ck+1[·]k +
(
c j+1 −1

)
[·] j +u, u ∈Π j−1,

and comparison of coefficients yields c j+2 = ·· · = cm = 0 as well as c j+1 = 1, hence v j+1 =

[·] j+1 +u j+1 with u j+1 ∈Π j , which advances the induction hypothesis.

For the converse “⇒”, we note that for any v ∈Vd we have that for j ≥ 1

∆v j − v j−1 = [·] j−1 +∆u j − [·] j−1 −u j−1 =∆u j −u j−1 ∈Π j−2

and since
{

v0, . . . , v j−2

}
is a basis of Π j−2, the polynomial ∆v j − v j−1 can be uniquely written

as

c0v0 +·· ·+ c j−2v j−2 =−

d∑

ℓ=d− j+2

td− j ,ℓ vd−ℓ

which defines the remaining entries of row d − j of T̃d in a unique way such that T̃d v = 0. �

The last observation in the above proof can be formalized as follows.

Corollary 8 For each v ∈ Vd there exists a unique generalized complete Taylor operator T̃d

such that T̃d v = 0.

Definition 9 The generalized Taylor operator of Corollary 8, uniquely defined by

T̃ (v ) v = 0, (14)

is called the annihilator of v ∈Vd and written as T̃ (v ). We can skip the subscript “d” because it

is directly given by the dimension of v .
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Definition 10 A chain of length d +1 is a finite sequence V := [v 0, . . . , v d ] of vectors

v j =




v j , j

...

v j ,0


=




[·] j

...

[·]0


+u j ∈V j , j = 0, . . . ,d ,

that satisfies the compatibility condition

w j+1 :=




w j+1,1

...

w j+1, j+1


 := T̃ (v j )




v j+1, j+1

...

v j+1,1


 ∈R

j+1, j = 0, . . . ,d −1. (15)

Remark 11 Compatibility is a strong requirement on the interaction between v j and v j+1. In

general, T̃ (v j )




v j+1, j+1

...

v j+1,1


 can only be expected to be a vector of polynomials inΠ j , . . . ,Π0, while

compatibility requires all these polynomials to be constants.

Due to and by means of the compatibility condition, chains uniquely define a generalized

Taylor operator.

Lemma 12 If V is a chain of length d +1, then w j j = 1, j = 1, . . . ,d.

Proof: Since v j+1,1 = [·]1 + c for some constant c due to v j ∈V j , it follows immediately from

the definition (15) that

w j+1, j+1 =∆v j+1,1 = 1,

as claimed. �

We introduce the convenient abbreviation

v̂ j :=

[
v j

0d− j

]
∈R

d+1, j = 0, . . . ,d , (16)

where the dimension d is clear from the context.

Proposition 13 For V = [v 0, . . . , v d ], v j ∈ V j , j = 0, . . . ,d, of length d + 1 the following state-

ments are equivalent:

1. V is a chain of length d +1.

2. For j = 1, . . . ,d, we have

T̃ (v j ) =

[
T̃ (v j−1) −w j

∆

]
=




∆ −w1,1 . . . −w j ,1

∆
. . .

...
. . . −w j , j

∆




, w j ∈R
j . (17)
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3.

T̃ (v d ) v̂ j = 0, j = 0, . . . ,d . (18)

Proof: To show that 1) ⇒ 2), we note that again (15) yields that

0 = T̃ (v j )




v j+1, j+1

...

v j+1,1


−w j+1 =

[
T̃ (v j ) | −w j+1

]




v j+1, j+1

...

v j+1,1

1




=
[
T̃ (v j ) | −w j+1

]
v j+1.

Since T̃ (v j+1) is unique, we deduce that

T̃ (v j+1) =

[
T̃ (v j ) −w j+1

∆

]
, j = 0, . . . ,d −1, (19)

which directly yields (17).

For 2) ⇒ 3) we simply notice that

T̃ (v d ) v̂ j =

[
T̃ (v j ) ∗

0 ∗

][
v j

0d− j

]
=

[
T̃ (v j )v j

0

]
= 0,

while for 3) ⇒ 1) we first observe for j < d that

0 = T̃ (v d ) v j =

[
T̃ (v d )0: j ,0: j v j

0

]

and the uniqueness of the annihilators from Corollary 8 yields that T̃ (v d )0: j ,0: j = T̃ (v j ). This,

in turn, implies together with (18) that

0 = T̃ (v d ) v̂ j+1 =




T̃ (v j ) −w j+1 ∗

∆ ∗

∗







v j+1, j+1

...

v j+1,1

1

0



=




T̃ (v j )




v j+1, j+1

...

v j+1,1


−w j+1

0

0




,

which is the compatibility identity (15), hence V is a chain. �

The above proof shows that T̃ (v j ) = T̃ (v d )0: j ,0: j , j = 0, . . . ,d , hence all generalized Taylor op-

erators associated to a chain depend only on v d . This justifies the following definition.

Definition 14 The unique generalized Taylor operator T̃ (v d ) for a chain V will be written as

T̃ (V ).

Remark 15 Since complete and incomplete Taylor operators differ only on the ∆ or 1 in lower

right corner, there is an obvious extension of the definition to T (V ) and the two operators are

equivalent.
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Example 16 Let p j = [·] j +q j , q j ∈Π j−1, j = 0, . . . ,d, be given. Then

v j =

[
p j , p ′

j
, . . . , p

( j )

j

]T

is a chain for the classical complete Taylor operator

T̃C ,d :=




∆ −1 −1/2! −1/3! . . . −1/d !

∆ −1 −1/2! . . . −1/(d −1)!

∆ −1
...

. . .
. . .

...

∆ −1

∆




. (20)

This is exactly the relationship for the classical spectral condition from [6, 15]. Similarly,

v j =
[
p j , ∆p j , . . . , ∆ j p j

]T

is a chain for the operator

T̃∆,d :=




∆ −1 0

. . .
. . .

. . . −1

∆




. (21)

Another interesting generalized Taylor operator is

T̃S,d :=




∆ −1 . . . −1

. . .
. . .

...
. . . −1

∆




, (22)

whose chains, connected to B–splines, we will consider in Example 46 later.

Lemma 17 For any generalized complete Taylor operator T̃d there exists a chain V of length

d +1 such that T̃d = T̃d (V ).

Proof: The construction of the chain V is carried out inductively. To that end, we recall that

if p ∈Π is of the form ∆p = [·]k for some k ∈N, then p = [·]k+1 + c with some c ∈R.

Next, let v j ∈V j , j = 0, . . . ,d , be any solution of

0 = T̃d v̂ j =

[
T̃ j ∗

0 ∗

][
v j

0d− j

]
,

or, equivalently, of T̃ j v j = 0. Such a solution can be found by setting v j 0 = 1 and then solving,

recursively for k = 1, . . . , j , the equation given by row j −k of the Taylor operator,

0 =∆v j ,k − v j ,k−1 +

k−2∑

ℓ=0

t j−k, j−ℓ v j ,ℓ. (23)
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Equivalently, this can be written with respect to the basis {[·]0, . . . , [·]k−1} and using v j ,k−1 =

[·]k−1 +u j ,k−1, u j ,k−1 ∈Πk−2, as

0 =∆v j ,k − [·]k−1 +

k−2∑

ℓ=0

s j−k,ℓ [·]ℓ, s j−k,ℓ ∈R,

yielding

v j k = [·]k +

k−1∑

ℓ=1

s j−k,ℓ−1[·]ℓ+ ck0, k = 0, . . . , j ,

where the constants ck0 ∈ R can be chosen freely. This process yields polynomial vectors

v j ∈V j such that T̃ j v j = 0, j = 0, . . . ,d .

Thus, it follows from the uniqueness of the annihilating Taylor operator from Corollary 8

that T̃ j = T̃ (v j ), and decomposing the identity

0 = T̃ (v j+1)v j+1 = T̃ j+1v j+1 =

[
T̃ (v j ) −w

0 ∆

]
v j+1, w ∈R

j+1,

yields

T̃ (v j )




v j+1, j+1

...

v j+1,1


= w =: w j+1, (24)

which is exactly the compatibility condition (15) needed for V to be a chain. �

Corollary 18 In the chain V from Lemma 17 the constant coefficients of the polynomials v j k ,

j = 1, . . . ,d, k = 1, . . . , j , can be chosen arbitrarily.

Remark 19 The chain associated to a generalized Taylor operator is not at all unique, see also

Example 16.

The next result shows that any polynomial vector in Vd can be reached by a chain of length

d +1.

Proposition 20 For any v ∈Vd there exists a chain V = [v 0, . . . , v d ] of length d +1 with v d = v ,

i.e., T̃ (V ) = T̃ (v ).

Proof: Again we prove the claim by induction on d . The case d = 0 is trivial as the only

chain of length 0 consists of v = 1. For the induction step, we choose v ∈ Vd , d > 0 and the

associated generalized Taylor operator T̃ (v ) as in Definition 9. Then we know from Lemma 17

that there exists a chain V = [v 0, . . . , v d ] of length d + 1 such that T̃ (v )V = 0. Suppose that

v d 6= v and, in particular, that vd ,1(0) = v1(0)−1, which is possible according to Corollary 18.

With

v =




[·]d

...

[·]0


+u, v d =




[·]d

...

[·]0


+ud , u0 = ud ,0 = 0,

10



we find that

0 = T̃ (v ) (v −v d ) = T̃ (v )




ud −ud ,d

...

u1 −ud ,1

0



=: T̃ (v )

[
v ′

0

]

where u1−ud ,1 = v1(0)−vd ,1(0) = 1. In addition, Lemma 7 yields that v ′ ∈Vd−1 and therefore

the decomposition

T̃ (v ) =

[
T̃ (v ′) −w

0 ∆

]
, w ∈R

d ,

and

0 = T̃ (v )v =

[
T̃ (v ′) −w

0 ∆

]



vd

...

v1

1



=




T̃ (v ′)




vd

...

v1

1



−w

∆




compatibility between v ′ and v . By the induction hypothesis, there exists a chain V ′ of length

d with v d−1 = v ′ and since v ′ is compatible with v , this chain can be extended to length d +1

with v ′
d
= v . �

4 Chains and factorizations

We now relate the existence of a spectral chain to factorizations of the subdivision operators,

thus extending the results first given in [15] for the classical Taylor operator.

Definition 21 A chain V of length d+1 is called spectral chain for a vector subdivision scheme

with mask A ∈ ℓ(d+1)×(d+1)(Z) if

S A v̂ j = 2− j v̂ j , j = 0, . . . ,d . (25)

with v̂ j from (16).

Remark 22 The spectral chain is an extension of the classical spectral condition which, in

turn, corresponds to the special choice v j =

[
p j , p ′

j
, . . . , p(d)

j

]T
, see also Example 16.

We will prove in Theorem 25 that the existence of spectral chains is equivalent to the existence

of generalized Taylor factorizations. The main tool for this proof is the following result.

Proposition 23 If C ∈ ℓ(d+1)×(d+1)(Z) is a finitely supported mask for which there exists a chain

V such that SC v̂ j = 0, j = 0, . . . ,d, then there exists a finitely supported mask B ∈ ℓ(d+1)×(d+1)(Z)

such that SC = SB T̃ (V ).

11



Proof: We follow the idea from [15] and prove by induction on k that the symbol C∗(z) satis-

fies

C∗(z) = B∗
k (z)

[
T̃ (v k )∗(z2) 0

0 I

]
, k = 0, . . . ,d . (26)

with the columnwise written matrix

B∗
k (z) =

[
b∗

0 (z) · · ·b∗
k (z)c∗

k+1(z) · · ·c∗
d (z)

]
. (27)

The construction makes repeated use of the well known factorization for a scalar subdivision

scheme Sa : ∑

α∈Z

a(α−2β) = 0 ⇒ a∗(z) = (z−2
−1)b∗(z), (28)

see, for example, [1] for a proof.

For case k = 0, the annihilation of the vector v̂ 0 = e0 = [1,0, . . . ,0]T immediately gives the

decomposition c∗
0 (z) =

(
z−2 −1

)
b∗

0 (z) and therefore

C∗(z) =
[
b∗

0 (z)c∗
1 (z) · · ·c∗

d (z)
][

z−2 −1

I

]

=
[
b∗

0 (z)c∗
1 (z) · · ·c∗

d (z)
][

T̃ (v 0)∗(z2)

I

]
.

Now suppose that (26) holds for some k ≥ 0. Then the fact that V is a chain yields, by means

of the compatibility condition

w k+1 = T̃ (v k )




vk+1,k+1

...

vk+1,1




that

0 = SC v̂ k+1 = SB k




T̃ (v k )

1

I




[
v k+1

0

]
= SB k




w k+1

1

0


 ,

or, applying (28) to each row of the preceding equation,

[
b∗

0 (z) · · ·b∗
k (z)

]T
w k+1 +c∗

k+1(z) =
(
z−2

−1
)

b∗
k+1(z),

which is

c∗
k+1(z) =

[
b∗

0 (z) · · ·b∗
k+1(z)

]T
[
−w k+1

z−2 −1

]
,

or

C∗(z) =
[
b∗

0 (z) · · ·b∗
k+1(z)c∗

k+2(z) · · ·c∗
d (z)

]



T̃ (v k )∗(z2) −w k+1

z−2 −1

I


 . (29)

Since

T̃ (v k+1)∗(z) =

[
T̃ (v k )∗(z) −w k+1

z−1 −1

]
,

12



(29) yields (26) with k replaced by k +1 and advances the induction hypothesis. �

Remark 24 Proposition 23 shows that, in the terminology of [2], the generalized Taylor oper-

ator is a minimal annihilator for the chain V since it annihilates the chain and factors any

subdivision operator that does so, too.

Now we can show that the existence of a spectral chain results in the existence of a factor-

ization by means of generalized Taylor operators. Since the Taylor operator corresponds to

computing differences, the scheme SB from (30) is often called the difference scheme of S A

with respect to the generalized Taylor operator T̃ (V ).

Theorem 25 If S A possesses a spectral chain V of length d +1 then there exists a finite mask

B ∈ ℓ(d+1)×(d+1)(Z) such that

T̃ (V )S A = SB T̃ (V ). (30)

Proof: Since SC := T̃ (V )S A has the property that

SC v̂ k = T̃ (V )S A v k = 2−k T̃ (V )v k = 0,

an application of Proposition 23 proves the claim. �

Remark 26 For the validity of Theorem 25, which is of a purely algebraic nature, the concrete

eigenvalues of the spectral set are irrelevant. Their normalization will play a role, however, as

soon as convergence is concerned.

Next, we generalize a result from [16] that serves as a converse of Theorem 25. The proof is a

modification of the former.

Theorem 27 Suppose that for a finitely supported mask A ∈ ℓ(d+1)×(d+1) there exists a finitely

supported B and a generalized incomplete Taylor operator Td such that Td S A = 2−d SB Td and

SB ed = ed . If a chain V = [v 0, . . . , v d ] with T̃d = T̃ (V ) satisfies

S A v̂ j ∈ span
{

v̂ 0, . . . , v̂ j

}
, j = 0, . . . ,d , (31)

then there exists a spectral chain V ′ for S A .

Proof: Relying on Lemma 17, we choose a chain V such that T̃d = T̃ (V ), which particularly

yields that Td v d = ed . Then

Td v d = ed = SB ed = SB Td v d = 2d Td S A v d

implies that Td

(
2−d v d −S A v d

)
= 0, hence

S A v d = 2−d v d + ṽ , 0 = Td ṽ =

[
T̃d−1 ∗

1

]
ṽ ,

13



so that ṽ0 = 0 and therefore T̃d−1 v 0:d−1 = 0. Since v̂ 0, . . . , v̂ d−1 form a basis for the kernel of

T̃d with last component equal to zero, it follows that v ∈ span{v̂ 0, . . . , v̂ d−1}. Making use of

the two–slantedness of S A , one can literally repeat the arguments of the proof of [16, Theo-

rem 2.11] to conclude that

S A v̂ j −2− j v̂ j ∈ span
{

v̂ 0, . . . , v̂ j−1

}
,

hence S A [v̂ 0, . . . , v̂ d ] = [v̂ 0, . . . , v̂ d ]U , where U ∈R
(d+1)×(d+1) is an upper triangular matrix with

diagonal entries 1, . . . ,2−d . Using the upper triangular S such that S−1U S is diagonal, we can

then define V ′ by
[

v̂ ′
0, . . . , v̂ ′

d

]
= [v̂ 0, . . . , v̂ d ]S, which is a chain since

T̃ (v d )

(
j∑

k=0

ck v̂ k

)
= 0, j = 0, . . . ,d ,

due to Proposition 13. �

5 Convergence

From [15, 16] we know that the Hermite subdivision scheme HA converges to a C d function

according to Definition 2 if

1. there exists a scheme SB such that TC ,d S A = 2−d SB TC ,d and SB is a convergent vector

subdivision scheme with limit function ψg = ed fg , for given input data g , where ed =

[0, . . . ,0,1]T and fg is a scalar valued function,

2. there exists a scheme SB̃ such that T̃C ,d S A = 2−d SB̃ T̃C ,d and SB̃ is contractive.

Note that the normalization with the factor 2−d now becomes relevant since it affects the

normalization and contractivity property of SB and SB̃ , respectively.

Before we give the results about the convergence replacing TC ,d and T̃C ,d by T and T̃ ,

respectively, we will now consider conditions to guarantee that B̃ is the result of such a fac-

torization. To that end, we recall the factorization identity
[

I d

∆

]
SB = SB̃

[
I d

∆

]
(32)

from vector subdivision [18]. This relationship does not depend on the form of the Taylor

operator. In terms of symbols, (32) becomes

[
I d

z−1 −1

][
B∗

11(z) B∗
12(z)

B∗
21(z) B∗

22(z)

]
=

[
B̃

∗

11(z) B̃
∗

12(z)

B̃
∗

21(z) B̃
∗

22(z)

][
I d

z−2 −1

]
, (33)

hence

B∗(z) =

[
I d

z−1 −1

]−1 [
B̃

∗

11(z) B̃
∗

12(z)

B̃
∗

21(z) B̃
∗

22(z)

][
I d

z−2 −1

]

=

[
B̃

∗

11(z) (z−2 −1) B̃
∗

12(z)

(z−1 −1)−1B̃
∗

21(z) (z−1 +1) B̃
∗

22(z)

]
. (34)
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Lemma 28 SB converges to a continuous limit function of the form ψg = fg ed if and only if

SB̃ is contractive, B̃ 21(1) = 0 and B̃ 22(1) = 1.

Proof: That convergence of the above type is equivalent to factorization and contractivity

has been shown in [18], which already gives “⇒”. For “⇐”, however, we also must ensure

that B∗ as defined in (34) is a Laurent polynomial. To that end, we must have B̃
∗

21(1) = 0,

otherwise (z−1 − 1)−1B̃
∗

21(z) has a pole at 1. Second, the condition SB ed = ed is equivalent

to B∗(−1)ed = 0 and B∗(1)ed = 2ed . The first one of these requirements is automatically

satisfied according to (34), the second one becomes 2B∗
22(1) = 2. �

Remark 29 Not that B̃
∗

22 from (33) is just the scalar valued Laurent polynomial b̃∗
dd

.

Now we study the convergence of the Hermite scheme whenever we have one of the fac-

torizations: T̃ S A = 2−d SB̃ T̃ or T S A = 2−d SB T . To that end, we first recall the one dimensional

case of [15, Lemma 3].

Lemma 30 Given a sequence of refinements hn =

[
h(0)

n

h(1)
n

]
∈ ℓ(Z,R2) such that

1. there exists a constant c in R such that limn→+∞ h(0)
n (0) = c,

2. there exists a function ξ ∈ C (R,R) such that for any compact subset K of R there exists a

sequence µn with limit 0 and

max
α∈2n K∩Z

∣∣h(1)
n (α)−ξ

(
2−nα

)∣∣
∞

≤ µn , (35)

max
α∈2n K∩Z

∣∣2n
∆h(0)

n (α)−h(1)
n (α)

∣∣
∞

≤ µn . (36)

Then there exists for any compact K a sequence θn with limit 0 such that the function

ϕ(x) = c +

∫1

0
x ξ (t x)d t , x ∈R, (37)

satisfies

max
α∈2n K∩Z

∥∥h(0)
n (α)−ϕ

(
2−nα

)∥∥≤ θn , n ∈N. (38)

Theorem 31 Let A,B ∈ ℓ(d+1)×(d+1)(Z) be two masks related by the the factorization Td S A =

2−d SB Td for some generalized incomplete Taylor operator Td .

Suppose that for any initial data f 0 ∈ ℓd+1(Z) and associated refinement sequence f n of

the Hermite scheme HA ,

1. the sequence f n(0) converges to a limit y ∈R
d+1,

2. the subdivision scheme SB is C p−d –convergent for some p ≥ d, and that for any initial

data g 0 = Td f 0, the limit function Ψ=Ψg ∈C p−d
(
R,Rd+1

)
satisfies

Ψ=

[
0

ψ

]
, ψ ∈C p−d (R,R) . (39)
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Then HA is C p –convergent.

Proof: The proof is adapted from the proofs in [6, 14]. Given f 0 ∈ ℓd+1(Z), let g 0 = Td f 0. We

define the following two sequences: f n+1 = D−n−1S A(D f n) and g n+1 = SB g n , n ∈ N. Since

Td S A = 2−d SB Td , we can directly deduce that f n+1 = 2nd Td Dn f n .

With the convergence of f n(0), let yi := limn→+∞ f (i )
n (0), i = 0, . . . ,d . Then we define Φ

recursively beginning with φd =ψ and setting

φi (x) = yi +

∫1

0
xφi+1(t x)d t i = d −1, . . . ,0. (40)

Then Φ= [φi ]i=0,...d is continuous with φ(d−i )
i

=ψ.

Fixing a compact K ⊂ R, we will prove by a backward finite recursion that for k = d ,d −

1, . . . ,0, there exists a sequence εn with limit 0 such that
∣∣∣ f (k)

n (γ)−φk

(
2−nγ

)∣∣∣≤ εn , γ ∈Z∩2nK . (41)

The case k = d is an immediate consequence of the convergence of the last row of g n and

g (d)
n = f (d)

n , which yields for any γ ∈Z∩2nK that
∣∣∣ f (d)

n (γ)−ψ(2−nγ)
∣∣∣≤ εn , (42)

while, for k < d , the convergence of the appropriate component of g n to zero implies that

2n(d−k)

∣∣∣∣∣∆ f (k)
n (γ)−

1

2n
f (k+1)

n (γ)+
d−k∑

ℓ=2

tk,k+ℓ
1

2nℓ
f (k+ℓ)

n (γ)

∣∣∣∣∣≤ εn , (43)

for a sequence εn that tends to zero for n →∞.

To prove (41) for k = d − 1, we define the sequences hn = [ f (d−1)
n , f (d)

n ]T . Then (43) be-

comes
∣∣∣2n

∆ f (d−1)
n (·)− f (d)

n (·)
∣∣∣≤ εn . Because of (42), we can apply Lemma 30 and obtain that

∣∣∣ f (d−1)
n (γ)−φd−1

(
2−nγ

)∣∣∣≤ θn , γ ∈ 2nK ∩Z,

which is (41) for k = d −1.

To prove the recursive step k +1 → k, 0 ≤ k < d −2, we get from (43) that, for γ ∈Z∩2nK ,

∣∣∣2n
∆ f (k)

n (γ)− f (k+1)
n (γ)

∣∣∣≤
εn

2n(d−k)
+

d−k∑

ℓ=2

|tk,k+ℓ|

2nℓ

∣∣∣ f (k+ℓ)
n (γ)

∣∣∣ (44)

Since (41) holds for j > k, it follows that

lim
n→∞

∣∣∣ f
( j )

n (γ)−φ j

(
2−nγ

)∣∣∣= 0

uniformly for γ ∈ Z∩2nK and since φ j is bounded on K , so is the sequence
∣∣∣ f

( j )
n (γ)

∣∣∣ on Z∩

2nK . Thus the right hand side of (44) converges to zero so that it immediately implies (41)

using again Lemma 30. �

As a consequence of Theorem 31 and Lemma 28 we also have the following results.
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Corollary 32 Let A, B̃ ∈ ℓ(d+1)×(d+1)(Z) be two masks related by the the factorization T̃d S A =

2−d SB̃ T̃d for some generalized complete Taylor operator T̃d . For any initial data f 0 ∈ ℓd+1(Z)

and associated refinement sequence f n of the Hermite scheme HA , we suppose that the se-

quence f n(0) converges to a limit y ∈ R
d+1. If SB̃ is contractive and b̃∗

dd
(1) = 1, then HA is

C d –convergent.

Remark 33 The condition that f n(0) converges can be discarded by using the techniques from

[3]. The factorization arguments used there can easily be seen to carry over to the situation of

arbitrary generalized Taylor operators. Nevertheless, we prefer the proof given here due to its

analytic flavor which nicely corresponds to the graphs shown later. There the function ψ equals

the last derivative of the limit function in accordance with the proof above.

Corollary 34 If, for a mask A ∈ ℓ(d+1)×(d+1)(Z), there exists a spectral chain V and the differ-

ence scheme defined by T̃d S A = 2−d SB̃ T̃d is contractive and satisfies b̃∗
dd

(1) = 1, then HA is

C d –convergent.

Remark 35 A normalization property like b̃∗
dd

(1) = 1 has to exist in order to describe conver-

gence since all the other properties hold regardless of a rescaling of A and thus B̃ by any con-

stant. But of course such a rescaling either makes the iteration diverge or converge to zero for

any input data which both is excluded from the notion of convergence of a subdivision scheme.

Chains seem to be the proper generalization of sum rules from scalar subdivision. They pro-

vide a large and exhaustive family of annihilators for factorization of subdivision operators;

the only requirement a generalized Taylor operator has to fulfill is the −1 on the first super-

diagonal that encodes, in a discrete way, the fact that the j +1st entry of the limit function is

the derivative of the j th entry. This leads us to the following conjecture.

Conjecture Given a mask A ∈ ℓ(d+1)×(d+1)(Z). The Hermite subdivision scheme HA is

C d –convergent if and only if there exists a spectral chain V such that the difference scheme

defined by T̃d S A = 2−d SB̃ T̃d is contractive and satisfies b̃∗
dd

(1) = 1.

6 Unfactoring constructions

In this section we consider the construction of convergent Hermite subdivision schemes that

factorize with respect to a given generalized Taylor operator, thus showing that there exist

whole classes of convergent Hermite subdivision schemes that do not satisfy the spectral

condition. In particular, the spectral condition is not necessary for C d –convergence.

These constructions will be based on determining a contractive difference scheme B̃ . The

difficulty, as in all vector subdivision schemes, lies in the fact that, in contrast to the scalar

case, not every vector subdivision scheme is the difference scheme of a finitely supported

vector or Hermite subdivision schemes, but that more intricate algebraic conditions have to

be taken into account. Since the remainder of this section is rather technical, let us first point

out the main, simple idea behind the construction. By the Taylor factorization property, the

symbols of A and B̃ are related by

T̃ ∗
d (z) A∗(z) = B̃

∗
(z) T̃ ∗

d (z2), i.e., A∗(z) =
(
T̃ ∗

d (z)
)−1

B̃
∗

(z) T̃ ∗
d (z2). (45)
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Hence, the mask B̃ with the contractive operator SB̃ defines A∗, but, due to occurrence of the

inverse of the symbol of, this can be a rational function. In order to make it a Laurent poly-

nomial, further algebraic conditions on the components of B̃
∗

have to be satisfied. We will

identify these conditions in the next section and then show how they can be easily satisfied

for triangular, contractive choices of B̃ .

6.1 Conditions on the difference schemes

We begin with an inversion of the Taylor operator.

Lemma 36 For any generalized complete Taylor operator T̃d , there exists an upper triangular

matrix P∗(z) of Laurent polynomials such that

(
T̃ ∗

d (z)
)−1

=
1

z−1 −1
D∗

d (z)P∗(z)
(
D∗

d (z)
)−1

, (46)

where

D∗
d (z) =




1

z−1 −1
. . .

(z−1 −1)d




.

Moreover p∗
j j

(z) = 1, j = 0, . . . ,d, and

P∗(1) =




1 . . . 1

. . .
...

1


 . (47)

Proof: Since

T̃ ∗
d (z) =




z−1 −1 ∗ . . . ∗

z−1 −1
. . .

...
. . . ∗

z−1 −1



= (z−1

−1)

(
I −

N

z−1 −1

)

with the strictly upper triangular nilpotent matrix

N =




0 1 ∗ . . . ∗

0 1
. . .

...

0
. . . ∗

. . . 1

0




∈R
(d+1)×(d+1), N d+1

= 0,
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it follows that

(
T̃ ∗

d (z)
)−1

=
1

z−1 −1

(
I +

d∑

j=1

(
N

z−1 −1

) j
)

=




p∗
00(z)

z−1−1

p∗
01(z)

(z−1−1)2 . . .
p∗

0d
(z)

(z−1−1)d+1

p∗
11(z)

z−1−1

. . .
...

. . .
p∗

d−1,d
(z)

(z−1−1)2

p∗

dd
(z)

z−1−1



=

1

z−1 −1
D∗

d (z)P∗(z)
(
D∗

d (z)
)−1

.

The property of the diagonal elements p j j is immediate from the form of N , in particular
∑d

j=1

(
N

z−1−1

) j
has a null diagonal.

For the computation on the off-diagonal elements, we notice that due to

N j
=




0 . . . 0 1 ∗ . . . ∗

. . .
. . .

. . .
. . .

...

0 . . . 0 1 ∗

. . .
. . . 1

0 . . . 0
. . .

...

0




,

it follows that

p∗
j k

(z)

(z−1 −1)k− j+1
=

1

(z−1 −1)k− j+1
+

q j k (z)

(z−1 −1)k− j
=

(z−1 −1)q j k (z)+1

(z−1 −1)k− j+1
,

which gives (47). �

Example 37 For the generalized complete Taylor operator T̃∆,d from (21), we get the constant

polynomial matrix

P∗(z) = P∗(1) =




1 . . . 1

. . .
...

1


 .

Next, we compute C∗(z) :=
(
T̃ ∗

d
(z)

)−1
B̃

∗
(z), by first noting that

1

z−1 −1

(
D∗

d (z)
)−1

B̃
∗

(z) =




b̃∗
00(z)

z−1−1
. . .

b̃∗

0d
(z)

z−1−1
...

. . .
...

b̃∗

d0
(z)

(z−1−1)d+1 . . .
b̃∗

dd
(z)

(z−1−1)d+1


 .
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Note that without further assumptions this can be a matrix of rational functions. Therefore

the entries c∗
j k

(z) of

C∗(z) =
(
T̃ ∗

d (z)
)−1

B̃
∗

(z) = (z−1
−1)−1D∗

d (z)P∗(z)
(
D∗

d (z)
)−1

B̃
∗

(z)

satisfy, for j ,k = 0, . . . ,d ,

c∗j k (z) = (z −1) j
d∑

ℓ= j

p∗
jℓ(z)

b̃∗
ℓk

(z)

(z−1 −1)ℓ+1
=

d∑

ℓ= j

p∗
jℓ(z)

b̃∗
ℓk

(z)

(z−1 −1)ℓ− j+1
.

Then, the components a∗
j k

(z) of the final result

A∗(z) =
((

T̃d

)∗
(z)

)−1
B̃

∗
(z)

(
T̃d

)∗
(z2) =C∗(z)

(
T̃d

)∗
(z2)

satisfy, since
((

T̃d

)∗
(z2)

)
r k = 0 for r > k,

a∗
j k (z) =

d∑

r=0

c∗j r (z)
((

T̃d

)∗
(z2)

)
r k =

k∑

r=0

c∗j r (z)
((

T̃d

)∗
(z2)

)
r k

= (z−2
−1)c∗j k (z)−

k−1∑

r=0

c∗j r (z) wk,r+1

= (z−1
+1)

d∑

ℓ= j

p∗
jℓ(z)

b̃∗
ℓk

(z)

(z−1 −1)ℓ− j
−

k−1∑

r=0

wk,r+1

d∑

ℓ= j

p∗
jℓ(z)

b̃∗
ℓr

(z)

(z−1 −1)ℓ− j+1
,

hence,

a∗
j k (z) =

d∑

ℓ= j

p∗
jℓ

(z)

(z−1 −1)ℓ− j

(
(z−1

+1)b̃∗
ℓk (z)−

k−1∑

r=0

wk,r+1

b̃∗
ℓr

(z)

z−1 −1

)
, j ,k = 0, . . . ,d . (48)

Now we can state a condition of B̃
∗

that ensures that A∗ is indeed a Laurent polynomial.

Lemma 38 If for any j ,k = 0, . . . ,d, there exists a Laurent polynomial h∗
j k

(z) such that

(z−1
+1)b̃∗

j k (z)−
k−1∑

r=0

wk,r+1

b̃∗
j r

(z)

z−1 −1
= (z−1

−1) j h∗
j k (z), (49)

then A ∈ ℓ(d+1)×(d+1)(Z).

Proof: Since p∗
jℓ

(1) = 1, all the terms of the outer sum in (48) are polynomials if and only if

(z−1
+1)b̃∗

ℓk (z)−
k−1∑

r=0

wk,r+1

b̃∗
ℓr

(z)

z−1 −1
, ℓ= j , . . . ,d ,

has an (ℓ− j )–fold zero at 1 for all j ≤ ℓ, in particular for j = 0, which yields (49) after replacing

ℓ by j . �
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The simplest way to solve (49) is to set

b̃∗
j k (z) = (z−1

−1) j h∗
j k (z), j = 0, . . . ,d −1, k = 0, . . . ,d , (50)

which we can even choose in a upper triangular way by setting h∗
j k

= 0 for k > j . Note that

this choice is even independent of the generalized Taylor operator.

For the final row, however, we cannot use this approach since it would yield b̃∗
dd

(1) = 0,

thus contradicting the requirement from Lemma 28. To overcome this problem, we set

b̃∗
d j (z) = (z−1

−1) g∗
d j (z) =: (z−1

−1)d− j h∗
d j (z−1), j = 0, . . . ,d . (51)

We want to construct h∗
d j

in such a way that for j = 0, . . . ,d the polynomials

(z−1
+1)b̃∗

d j (z)−
j−1∑

k=0

w j ,k+1

b̃∗
dk

(z)

z−1 −1

= (z−1
+1)(z−1

−1)d− j h∗
d j (z−1)−

j−1∑

k=0

w j ,k+1(z−1
−1)d−k−1h∗

dk (z−1)

= (z−1
−1)d− j

(
(z−1

+1)h∗
d j (z−1)−

j−1∑

k=0

w j ,k+1 (z−1
−1)( j−1)−k h∗

dk (z−1)

)

= (z−1
−1)d− j

(
(z−1

+1)h∗
d j (z−1)−

j−1∑

k=0

w j , j−k (z−1
−1)k h∗

d , j−1−k (z−1)

)

have a zero of order d at 1. Since w j j = 1, this is equivalent, after replacing z by z−1, to a zero

of order j at 1 of the Laurent polynomials

q j (z) := (z +1)h∗
d j (z)−h∗

d , j−1(z)−
j−1∑

k=1

w j , j−k (z −1)k h∗
d , j−1−k (z). (52)

This implies that

0 = q j (1) = 2h∗
d j (1)−h∗

d , j−1(1), j = 1, . . . ,d ,

which yields, together with the requirement that b̃∗
dd

(1) = 1, that

h∗
d j (1) = 2d− j , j = 0, . . . ,d . (53)

The r th derivative, r = 1, . . . , j , of q j is

q (r )
j

(z) =

r∑

s=0

(
r

s

)
d s

d zs
(z +1)

(
h∗

d j

)(r−s)
(z)−

(
h∗

d , j−1

)(r )
(z)

−

j−1∑

k=1

w j , j−k

r∑

s=0

(
r

s

)(
d s

d zs
(z −1)k

) (
h∗

d , j−1−k

)(r−s)
(z)

= (z +1)
(
h∗

d j

)(r )
(z)+ r

(
h∗

d j

)(r−1)
(z)−

(
h∗

d , j−1

)(r )
(z)

−

j−1∑

k=1

w j , j−k

min(k,r )∑

s=0

(
r

s

)
k !

(k − s)!
(z −1)k−s

(
h∗

d , j−1−k

)(r−s)
(z).
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Therefore, we can express the additional requirements as

0 = q (r )
j

(1)

= 2
(
h∗

d j

)(r )
(1)+ r

(
h∗

d j

)(r−1)
(1)−

(
h∗

d , j−1

)(r )
(1)

−

r∑

k=1

w j , j−k
r !

(r −k)!

(
h∗

d , j−1−k

)(r−k)
(1), r = 1, . . . , j −1, (54)

and, with r = j ,

0 = 2
(
h∗

d j

)( j )
(1)+ r

(
h∗

d j

)( j−1)
(1)−

(
h∗

d , j−1

)( j )
(1)

−

j−1∑

k=1

w j , j−k
j !

( j −k)!

(
h∗

d , j−1−k

)( j−k)
(1). (55)

Together, (54) and (55) can be used to build the polynomials h∗
d j

recursively.

This construction allows us to easily create factorizable schemes via (54) and (55), but

it is more difficult to choose h∗
d0

(z) in such a way that the final h∗
dd

(z) is the symbol of a

contractive scheme. To achieve this, we perform the recurrence in the opposite direction,

which is still easy for T̃∆.

Example 39 For the generalized Taylor operator T̃∆,d we get the simplified conditions

0 = 2
(
h∗

d j

)(r )
(1)+ r

(
h∗

d j

)(r−1)
(1)−

(
h∗

d , j−1

)(r )
(1), r = 1, . . . , j , (56)

or (
h∗

d j

)(r )
(1) =

1

2

((
h∗

d , j−1

)(r )
(1)− r

(
h∗

d j

)(r−1)
(1)

)
, r = 1, . . . , j . (57)

To come up with convergent schemes of arbitrary size that factor with T̃∆,d , we now solve (56)

for h∗
d , j−1

, replace j −1 by j and thus get

(
h∗

d j

)(r )
(1) = 2

(
h∗

d , j+1

)(r )
(1)+ r

(
h∗

d , j+1

)(r−1)
(1), r = 1, . . . , j +1,

which leads to the explicit formula

h∗
d j (z) = 2d− j

+

n+d− j∑

r=1

2
(
h∗

d , j+1

)(r )
(1)+ r

(
h∗

d , j+1

)(r−1)
(1)

r !
(z −1)r , j = d −1, . . . ,0, (58)

initialized with a polynomial h∗
dd

of degree n. Starting with the simplest choice h∗
dd

(z) = 1
2

(z+

1), we thus get

h∗
d ,d−1(z) = 2+2(z −1)+

1

2
(z −1)2

=
1

2
(z +1)2

h∗
d ,d−2(z) = 4+6(z −1)+3(z −1)2

+
1

2
(z −1)3

=
1

2
(z +1)3.
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If we now set fn(z) := 1
2

(z +1)n , then f (r )
n (1) = n!

(n−r )!
2n−r−1 and the fact that

2 f (r )
n−1(1)+ r f (r−1)

n−1 (1) =
(n −1)!

(n −1− r )!
2n−1−r

+ r
(n −1)!

(n − r )!
2n−1−r

=
(n −1)!

(n −1− r )!
2n−1−r

(
1+

r

n − r

)
=

(n −1)!

(n −1− r )!
2n−1−r n

n − r
=

n!

(n − r )!
2n−r−1

= f (r )
n (1)

shows that indeed

h∗
d j (z) =

1

2
(z +1)d− j+1, j = 0, . . . ,d , (59)

satisfy the recurrence (58) and therefore

b̃∗
d j (z) = (z−1

−1)d− j h∗
d j (z−1) =

1

2

(
z−1

+1
) (

z−2
−1

)d− j

is a proper choice. For d = 2, for example, we can set

B̃
∗

(z) =




−
z−1
2 z

0 0
(z−1)2

z2
(z−1)2

4 z2 0
(z−1)2 (1+z)3

2 z5 −
(z−1)(1+z)2

2 z3
1+z
2 z




and get the corresponding

A∗(z) = 1/4




−
(1+z)(−1−3 z−6 z2+2 z3)

2 z4 −
7 z2−1

4 z2 −
1
4

(z−1)(1+z)(−1−3 z−5 z2+z3)
2 z5

(z−1)(5 z2−1)
4 z3

z−1
4 z

(z−1)2 (1+z)4

2 z6 0 0




which yields a C 2–convergent subdivision scheme that does not satisfy the classical spectral

condition (6). It satisfies, however, a spectral chain condition related to the Taylor operator

T̃∆,d . The result is shown in Fig. 1.

For some time it was conjectured that all C d –convergent Hermite subdivision schemes must

satisfy a spectral condition. This is disproved by the following example of a family of conver-

gent schemes that satisfies no spectral condition.

Theorem 40 If the nonzero elements of the matrix B̃
∗

are of the form

b̃∗
j k (z) = (z−1

−1) j+1 h∗
j k (z), 0 ≤ k < j < d ,

b̃∗
j j (z) =

(z−1 −1) j+1

2 j+1
, j = 0, . . . ,d −1,

b̃∗
d j (z) =

1

2
(z−1

+1)
(
z−2

−1
)d− j

j = 0, . . . ,d ,

then there exists a C d –convergent Hermite subdivision scheme whose mask A satisfies T̃∆S A =

2−d SB̃ T̃∆.

Proof: Since B is lower triangular with contractions on the diagonal, the scheme SB̃ is con-

tractive. The factorization is satisfied by construction. �
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Figure 1: Limit functions for Example 39, showing the three entries of the limit function of the

Hermite subdivision scheme and the limit function of the associated convergent difference

scheme.

6.2 A generic construction for arbitrary Taylor operators

For an arbitrary generalized Taylor operator T̃ , we want to construct convergent schemes that

factorize with respect to T̃ , thus showing that convergence theory widely exceeds spectral

conditions.

Theorem 41 For any d ∈ N and any generalized Taylor operator T̃ of order d there exists a

convergent Hermite subdivision scheme with mask A that factors with T̃ , that is, such that

T̃ S A = 2−d SB̃ T̃ for some appropriate B̃ .

The proof continues the construction from the preceding subsection by giving an explicit way

to construct the polynomials h∗
d j

, j = 0, . . . ,d , in such a way that S A admits the factorization.

Proof: We will again set

b̃∗
d j (z) = (z−1

−1)d− j h∗
d j (z−1), (60)

and make use of (56) and (57) to determine the vectors

h j =




h j , j+1

...

h j 1


 :=




(
h∗

d j

)( j+1)
(1)

...(
h∗

d j

)′
(1)


 ∈R

j+1, j = 0, . . . ,d −1,
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which define B̃
∗

and eventually the desired mask A∗. We stack these vectors into the column

vector

h :=




hd−1

...

h0


 ∈R

d(d+1)
2 .

Again, let h∗
dd

(z) be the symbol of a contractive mask and recall that

h∗
d j (1) = 2d− j , j = 0, . . . ,d , (61)

is necessary due to Lemma 28 to obtain SB as a convergent vector subdivision scheme. Taking

(61) into account, the requirement for hd−1 can be obtained by setting j = d in (54), which

yields

hd−1,r +

r−1∑

k=1

wd ,d−k
r !

(r −k)!
hd−1−k,r−k

= 2
(
h∗

dd

)(r )
(1)+ r

(
h∗

dd

)(r−1)
(1)−wd ,d−r 2r+1, r = 1, . . . ,d −1.

In the same way, (55) transforms into

hd−1,d +

d−1∑

k=1

wd ,d−k
d !

(d −k)!
hd−1−k,d−k = 2

(
h∗

dd

)(d)
(1)+d

(
h∗

dd

)(d−1)
(1).

In matrix form, this can be rewritten as

bd =




1 ∗ . . . ∗

. . .
. . . 0

1 ∗
...

1 0 . . . 0 . . . 0




h (62)

=:
[

I d −H d ,d−2 . . . −H d ,0

]
h,

where

H d ,k =−wd ,k+1




d !
(k+1)!

. . .
(d−k)!

1!

0 . . . 0
...

. . .
...

0 . . . 0




∈R
d×k+1, k = 0, . . . ,d −2,

and

bd :=




2
(
h∗

dd

)(d)
(1)+d

(
h∗

dd

)(d−1)
(1)

2
(
h∗

dd

)(d−1)
(1)+ (d −1)

(
h∗

dd

)(d−2)
(1)−2d wd ,1

...

2
(
h∗

dd

)(1)
(1)+1−4 wd ,d−1



∈R

d .
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The conditions (54) and (55) for qd−1 can, in the same way, be written as

0 = 2hd−1,d−1 + (d −1)hd−1,d−2 −hd−2,d−1 −

d−2∑

k=1

wd−1,k
(d −1)!

k !
hk−1,k ,

as well as for r = 2, . . . ,d −2,

2r+2 wd−1,d−1−r = 2hd−1,r + r hd−1,r−1 −hd−2,r −

r−1∑

k=1

wd−1,d−1−k
r !

(r −k)!
hd−2−k,r−k ,

and finally the case r = 1

2d−1
= 2hd−1,r −hd−2,r .

taking the matrix form

bd−1 =




0 2 d −1 −1 . . . ∗

0 2
. . . −1 0

...
. . . 2

. . .
...

0 2 −1 . . . 0




a (63)

=:
[
C d−1 −I d H d−1,d−3 . . . H d−1,0

]
h

with

C j :=




0 2 j

0 2
. . .

...
. . . 2

0 2



∈R

j× j+1, j = 2, . . . ,d −1, C 1 :=
[
0 2

]
,

and

H d−1,k =−wd−1,k+1




(d−1)!
(k+1)!

. . .
(d−1−k)!

1!

0 . . . 0
...

. . .
...

0 . . . 0




∈R
d−1×k+1, k = 0, . . . ,d −3.

With the general definition

H j ,k =−w j ,k+1




j !
(k+1)!

. . .
( j−k)!

1!

0 . . . 0
...

. . .
...

0 . . . 0




∈R
j×k+1, k = 0, . . . , j −2, j = 1, . . . ,d , (64)
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the conditions (54) and (55) result in the system

b =




bd

...

b1


=




I d −H d ,d−2 −H d ,d−3 . . . −H d ,0

C d−1 −I d H d−1,d−3 . . . H d−1,0

. . .
. . .

. . .
...

C 2 −I 2 H 2,0

C 1 −1




h =: Hh, (65)

noting that 1 = I 1 = H 1,0. By Lemma 43, which we prove next, this linear system has a unique

solution h for any given polynomial h∗
dd

(z), which, by (60), defines the symbols b̃∗
d j

(z), j =

0, . . . ,d , with b̃∗
dd

(z) = h∗
dd

(z) and therefore

B̃
∗

(z) =




z−1−1
2

(z−1 −1)2 h∗
10(z) (z−1−1)2

4
...

. . .
. . .

(z−1 −1)d h∗
d−1,0

(z) . . . (z−1 −1)d h∗
d−1,d−2

(z) (z−1−1)d

2d

b̃∗
d0

(z) . . . b̃∗
d ,d−2

(z) b̃∗
d ,d−1

(z) b̃∗
dd

(z)




is the symbol of a contractive scheme that satisfies the conditions from Lemma 28 and for

which there exists a mask A such that S̃ A = SB̃ T̃ . Therefore, A defines a C d –convergent Her-

mite subdivision scheme. �

Remark 42 Recall that the whole construction process only had the purpose of finding the last

row of the lower triangular symbol B̃∗(z). All other entries could be chosen in a straightforward

way.

Lemma 43 Matrix H from (65) satisfies |det H | = 1.

Proof: Since the first column of C d−1 is zero, we can start with an expansion with respect to

the first column, yielding that det H is the same as the determinant of A with first row and

column erased. Then, we note that the last row of the matrix in (62) has only one nonzero

entry, namely −1. Expansion with respect to this row also removes the column that contains

the 2 in the last row of (65). Expanding with respect to this row then removes the row that

contains the last nonzero element in H d ,d−2 in (62), so that we can now expand with respect

to the second last row of (62). Circling in this way, we expand the determinant by means of

factors that are ±1, hence, the determinant of H is ±1 and in particular independent of T̃ ,

that is, independent of w 1, . . . , w d . �

7 Examples

To illustrate the potential of the methods, we start with two examples of masks obtained by

the construction process in Theorem 41. We restrict ourselves to the simplest nontrivial case

d = 2 here.
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Example 44 One parameter, w21, can be chosen freely. The associated linear system for h in

(65) has the simple form

H =

[
I 2 −H 2,0

C 1 −1

]
=




1 0 2w21

0 1 0

0 2 −1


 , H 2,0 =−w21

[
2

0

]

which explicitly becomes




1 2w21

1

2 −1







h12

h11

h01


=




2
(
h∗

dd

)′′
(1)+2

(
h∗

dd

)′
(1)

2
(
h∗

dd

)′
(1)+1−4w21

2




and gives

h11 = 2
(
h∗

dd

)′
(1)+1−4w21

h01 = 2a11 −2 = 4
(
h∗

dd

)′
(1)−8w21

h12 = 2
(
h∗

dd

)′′
(1)+2

(
h∗

dd

)′
(1)−2w21a01

= 2
((

h∗
dd

)′′
(1)+

(
h∗

dd

)′
(1)(1−4w21)+8w 2

21

)
.

Using the simplest possible choice h∗
dd

(z) = 1
2

(z +1), we get

h12 = 1−4w21 +16w 2
21

h11 = 2−4w21

h01 = 2−8w21,

and therefore

h∗
21(z) =

((1−4w21)z + (1+4w21))2

2
+2w21(z2

−1)

h∗
20(z) = 4+ (2−8w21)(z −1) = 2((1−4w21)z + (1+4w21)) ,

yielding

b̃∗
22(z) =

1

2
(z−1

+1)

b̃∗
21(z) = (1−4w21 +8w 2

21)z−3
+8w21(1−3w21)z−2

− (1+4w21 −24w 2
21)z−1

−8w 2
21

b̃∗
20(z) = (4−8w21)z−2

− (4−16w21)z−1
+8w 2

21.

The resulting limit functions are plotted in Fig 2.

Example 45 In continuation of Example 44, we now choose an arbitrary contractive version

based on

h∗
dd (z) =

(z +1)n

2n
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Figure 2: Limit functions for the constructions of Example 44 for the values w21 =
1
2

(blue,

solid) and w21 = 1 (red, dashed).
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Figure 3: Limit functions for Example 45 for the values w21 =
1
2

(blue, solid) and w21 = 1 (red,

dashed) and n = 5.

which has the property that

h∗
dd (1) = 1,

(
h∗

dd

)′
(1) =

n

2
,

(
h∗

dd

)′′
(1) =

n(n −1)

4
,

so that

h12 = 2

(
n(n −1)

4
+

n

2
(1−4 w21)+8w 2

21

)
=

n(n +1)

2
−4nw21 +16w 2

21,

h11 = n +1−4w21

h01 = 2n −8w21,

which leads to the graphs shown in Fig. 3. This even gives a whole family of convergent schemes

with the additional parameter n.

The last example revisits a Hermite subdivision scheme based on B–splines that was intro-

duced in [14] and further studied in [16] as one of the first examples of a family of convergent

Hermite subdivision schemes that do not satisfy the spectral condition.

This scheme is based on a construction detailed by Micchelli in [17]. Let ϕ0(x) = χ[0,1]

and define, for r = 1,2, . . ., the cardinal B–spline ϕr = ϕ0 ∗ϕr−1. We recall that ϕr is a C r−1
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piecewise polynomial of degree r with support [0,r +1] that satisfies the refinement equation

ϕr (x) =
1

2r

∑

α∈Z

(
r +1

α

)
ϕr (2x −α),

(
i

j

)
=

{
i !

j !(i− j )!
if 0 ≤ j ≤ i ,

0 otherwise.

The function v(x) =
∑

α∈Z f (0)
0 (α)ϕr (x −α) can be written as v(x) =

∑
α∈Z f (0)

n (α)ϕr (2n x −α),

n ∈N0, where

f (0)
n+1(·) =

∑

β∈Z

ar (·−2β) f (0)
n (β), ar (α) =

1

2r

(
r +1

α

)
, α ∈Z. (66)

We have proved in [16, Proposition 5.3] that for i = 0, . . . ,r one has

Sar
pi =

1

2i
pi , pi := ℓ(r−i )

r , ℓr (x) :=
1

r !

r∏

j=1

(x + j ). (67)

Taking derivatives of v ,

d i v

d xi
(x) =

∑

α∈Z

2ni
∆

i f (0)
n (α− i )ϕr−i

(
2n x −α

)
, i = 0, . . . ,r −1,

we define Hermite subdivision schemes of degree d ≤ r with mask A(α) and support [0,r +

d +1] by applying differences to the mask ar , yielding the following observation.

Example 46 The Hermite subdivision scheme based on

A(α) =




ar (α) 0 . . . 0

∆ar (α−1) 0 . . . 0

∆
2ar (α−2) 0 . . . 0

...

∆
d ar (α−d) 0 . . . 0




, A∗(z) =
(1+ z)r+1

2r




1 0 . . . 0

(1− z) 0 . . . 0

(1− z)2 0 . . . 0
...

(1− z)d 0 . . . 0




.

has as limit function the vector consisting of the B–spline and its derivatives but does not satisfy

the classical spectral condition, see [14].

Remark 47 The scheme of Example 46 was studied in [14] by means of similarity transforms

of the masks which was sufficient to show its convergence. The approach presented here is

different and more systematic.

In the following, we prove that the Hermite scheme from Example 46 possesses a spectral

chain.

Firstly, the computation of Taylor expansions yields that there for p ∈Πd the vectors v p =

[p, p ′, . . . , p(d)]T and v̂ p = [p,∆p(·−1), . . . ,∆d p(·−d)]T satisfy

v̂ p = R v p , R :=




1 0 0 . . . 0

1 ∗ . . . ∗

. . .
. . .

...

1 ∗

1



∈R

(d+1)×(d+1),
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where the d − j -th last components of v̂ p are zero if p ∈Π j , j < d .

Secondly, (67) yields Sar
p j = 2− j p j and the first component of v p j

is p j , since the only

non zero column of the matrices A(α) is the first one, we therefore deduce that

S A v p j
= S A

[
p j

∗

]
= S A v̂ p j

=
1

2 j
v̂ p j

, j = 0, . . . ,d ,

so that for j = 0, . . . ,d , the vectors v̂ j = v̂ p j
satisfy the spectral condition. To show that the

associated v̂ j form a chain, we have to find the appropriate generalized Taylor operator an-

nihilating v̂ d , its uniqueness being guaranteed by Corollary 8. This operator is T̃S,d from (22)

in Example 16. Indeed, by Lemma 49 proved at the end of this section,

(
T̃S,d v d

)
d− j = ∆

(
∆

j pd (·− j )
)
−

d− j∑

k=1

∆
k
(
∆

j pd (·− j )
)

(·−k)

= ∆
d pd (·− j −d +1)−∆

d pd (·− j −d) = 0, j = 0, . . . ,d ,

since ∆
d pd = 1. The same argument also shows that T̃S,d v̂ j = 0, j = 0, . . . ,d −1. Therefore V

forms a spectral chain for S A and by Theorem 25 there exists a finite mask B ∈ ℓ(d+1)×(d+1)(Z)

such that T̃S,d S A = SB̃ T̃S,d .

Example 48 (Example 46 continued) For r = 4, d = 3, we obtain

B̃
∗

(z) =




−
(z−1)3 z (1+z)4

2
(z−1)2 z3 (1+z)3

2
−

(z−1) z3 (1+z)2

2
z3 (1+z)

2

−
(z−1)3 z (1+z)4

2
(z−1)2 z3 (1+z)3

2
−

(z−1) z3 (1+z)2

2
z3 (1+z)

2

−
(z−1)3 z (1+z)4

2
(z−1)2 z3 (1+z)3

2
−

(z−1) z3 (1+z)2

2
z3 (1+z)

2

−
(z−1)3 z (1+z)4

2
(z−1)2 z3 (1+z)3

2
−

(z−1) z3 (1+z)2

2
z3 (1+z)

2




.

We close the paper with a simple identity on forward and backward differences needed for

Example 48 that may, however, be of independent interest.

Lemma 49 For p ∈Π and n ∈N we have that

∆p =

n−1∑

k=1

∆
k p(·−k)+∆

n p(·−n +1). (68)

Proof: Expanding the differences as

∆
k p(·−k) =

k∑

j=0

(−1) j

(
k

j

)
p(·− j ),

we find that

∆
n p(·−n +1)+

n−1∑

k=1

∆
k p(·−k)

= p(·+1)+
n−1∑

j=0

(−1) j+1

(
n

j +1

)
p(·− j )+

n−1∑

k=1

k∑

j=0

(−1) j

(
k

j

)
p(·− j )

= p(·+1)−p(·)+
n−1∑

j=0

(−1) j p(·− j )

((
n

j +1

)
−

n−1∑

k= j

(
k

j

))
,
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from which the claim follows by taking into account the combinatorial identity

(
n

j +1

)
=

n−1∑

k= j

(
k

j

)
, 0 ≤ j ≤ n −1, (69)

which is easily proved by induction on n: calling the left hand side of (69) f (n) and the right

hand side g (n), the initial step f ( j +1) = g ( j +1) = 1 is obvious, while

f (n +1)− f (n) =

(
n +1

j +1

)
−

(
n

j +1

)
=

(
n

j

)
= g (n +1)− g (n)

advances the induction. �
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