
Chapter 1

Simplex–Splines on the Clough–Tocher Split with Arbitrary
Smoothness.

Tom Lyche, Jean-Louis Merrien, and Tomas Sauer

Abstract The space of piecewise polynomials of smoothness r and degree 3r is considered on the Clough-Tocher

split of a triangle. For any r ≥ 1 we give a basis of simplex splines for this space, then a Marsden-like identity,

which is proved explicitly for r ≤ 3 and symbolically for 4 ≤ r ≤ 6. In addition, generalizing results for r = 1, we

prove for r = 2,3 a geometry independent bound for the condition number in the infinity norm of this basis, and

conditions to connect two triangles with smoothness r .
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1.1 Introduction

Splines over triangulations have applications in several branches of the sciences ranging from finite element

analysis, surfaces in computer aided design and other engineering problems, see for example [6, 9, 17]. For many

of these applications, piecewise linear C0 surfaces do not suffice. In some cases, we need smoother elements for

modeling, or higher polynomial degrees to increase the approximation order.

In this paper, we are interested in the space of polynomial splines over a triangulation ∆ of a polygonal domain

Ω of R2,

S
r
d(∆) := { f ∈ Cr (Ω) : f |T ∈ Pd, for all T ∈ ∆} ,

where d > r > 0 are given integers, and Pd is the space of bivariate polynomials of total degree ≤ d. The dimension

of this finite dimensional vector space is difficult to determine in general [17], but with the restriction d ≥ 3r + 2

its dimension can be expressed solely in terms of d and r , see [14].

We can use lower degrees if we are willing to split each triangle into a number of subtriangles. The most well

known examples are the Clough-Tocher split [5], and the Powell-Sabin 6 and 12 splits [23]. For these splits each

triangle is divided into 3,6 and 12 subtriangles, respectively. For material on these splits and B-spline like bases

for splines on triangulations see [2, 3, 7, 8, 10, 12, 13, 15–20,25–37].

Here we consider the Clough-Tocher triangulation ∆CT , see [4, 5], where each triangle in the original triangu-

lation ∆ is split into 3 subtriangles by connecting the vertices of each triangle to its barycenter , see Figure 1.1. In

[18], Hermite interpolation problems were considered for super-spline subspaces of Sr
3r+1

(∆CT ) and Sr
3r
(∆CT ) for

r even and odd, respectively. It was also stated that these degrees are minimal for global Cr . See also [25]. In [15]

stable local bases were constructed for even smaller super-spline subspaces of Sr
3r+1

(∆CT ) and Sr
3r
(∆CT ).

In this paper, we consider for any r ∈ N, the spaces Sr
3r
( ) on a single triangle T = in ∆CT for which

we construct a B-spline like basis made out of simplex splines. They constitute a basis for the space since we

show that their number agrees with the dimension of the space and that they are linearly independent. For the

latter the differentiation formula for simplex splines is used. This extends and generalizes the case r = 1 that was

considered in [19]. For more on the Clough-Tocher split see [1, 4, 11, 13, 15, 17, 18, 21, 28, 32]. Looking in more
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detail at the cases r = 2,3, corresponding to degrees d = 6,9, we moreover give explicit formulas for connecting

two neighboring triangles in a Cr fashion across an edge using Bernstein-Bézier techniques, and give an upper

bound for the L∞ condition number of the basis. This upper bound is independent of the shape of the triangle T .

We also give a Marsden-like identity for the reproduction of polynomials which is proved for r ≤ 3 and shown

symbolically for r ≤ 6. We conjecture that it holds for any r .

It was shown in [15,18] that global C2 continuity cannot be achieved for d = 6 for a general triangulation refined

by Clough-Tocher splits into ∆CT . However, for r odd it follows, again from [15, 18], that global Cr continuity

holds for d = 3r . This means in particular that the formulas for C3 continuity across an edge in Section 1.4.2 can

be used to compute with elements in S3
9
(∆CT ), using the simplex spline basis on each triangle in S3

9
(∆) in the usual

Bernstein-Bézier fashion.

Some results in this paper are based on symbolic computation. The first author can provide code in Mathematica

for specific results upon request.

The paper is organized as follows. Since it depends heavily on properties of Bernstein polynomials and simplex

splines, we recall some well known facts about these functions in the next section. In Section 1.3 we define a

collection of simplex splines and show that they constitute a basis for Sr
3r
( ), r ≥ 1. In Section 1.4, we consider the

cases of global C2 and C3 regularity in more detail. In Subsection 1.5.3, we give a generalization of the barycentric

Marsden-like identity for 3 < r . We add an appendix with some proofs not essential for the results in the paper,

but that can be of some use for a reader.

1.2 Preliminaries

In this section we recall some properties of Bernstein polynomials on a triangle and bivariate simplex splines. Here

we use the notation d ∈ N0 := N ∪ {0}, and let 〈S〉 denote the convex hull of the set S ⊂ R2.

1.2.1 Bernstein Polynomials

For a given nondegenerate triangle T := 〈{p1, p2, p3}〉 ∈ R2, and i, j, k ∈ N0, the Bernstein polynomial Bd
ijk

:

R
2 → R of degree d := i + j + k ∈ N0, is defined by

Bd
ijk(x, y) = Bd

ijk(β1, β2, β3) :=
d!

i! j!k!
βi1β

j

2
βk3 , (1.1)

where β = (β1, β2, β3) are the barycentric coordinates of x = (x, y) ∈ R2 with respect to T , i. e.,

x = β1 p1 + β2 p2 + β3p3, β1 + β2 + β3 = 1. (1.2)

The barycentric form of Marsden’s identity for Bernstein polynomials is simply the multinomial expansion

(u1β1 + u2β2 + u3β3)
d
=

∑
i+j+k=d

ui1u j

2
uk

3 Bd
ijk(β1, β2, β3), (u1,u2,u3) ∈ R

3, β1 + β2 + β3 = 1, (1.3)

where in the expression
∑

i+j+k=d it is understood that i, j, k ∈ N0, which is consistent with the convention that

Bd
ijk
= 0 if one of the indices becomes negative.

Taking partial derivatives of order ν, λ, κ ∈ N0 with respect to u1,u2,u3, respectively, in (1.3) and setting

u = (1,1,1) we obtain

βν1 β
λ
2 β

κ
3 =

∑
i+j+k=d

γi jk(β
ν
1 β

λ
2 β

κ
3 )B

d
ijk(β1, β2, β3), ν + λ + κ ≤ d, γi jk(β

ν
1 β

λ
2 β

κ
3 ) ∈ R. (1.4)

We find

1 =
∑

i+j+k=d

Bd
ijk(β1, β2, β3)

(β1, β2, β3) =
∑

i+j+k=d

b∗i jkBd
ijk(β1, β2, β3), b∗i jk =

(
i
d
,

j
d
,

k
d

)
.

(1.5)
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The vector b∗i jk is called the barycentric form of the domain point of Bd
ijk

. From (1.4) and (1.5) it follows that

the elements in the set

Bd := {Bd
ijk : i, j, k ≥ 0, i + j + k = d} (1.6)

form a partition of unity basis for Pd . Indeed, the number of elements #Bd of Bd equals
(d+2

2

)
, the dimension of

Pd . We refer to [17] for further properties of Bd
ijk

.

1.2.2 Bivariate Simplex Splines

For our purpose it is convenient to work with area normalized bivariate simplex splines [20] of degree d ≥ 0

with knots

K := {k1, . . . , kd+3}, k j ∈ R
2, j = 1, . . . , d + 3.

We can consider K either as a multiset or as a matrix K ∈ R2×(d+3).

The simplex spline Q[K] : R2 → R, is now defined as Q[K](x) = 0 for all x ∈ R2 if area(〈K〉) = 0, and

otherwise

Q[K] :=
area (T )(d+2

2

) M[K], (1.7)

where T is a fixed reference triangle in the original triangulation ∆. Here area(S) is the area in R2 of a set

S ∈ R2. The function M[K] is a unit integral bivariate normalized simplex spline, defined as a linear functional

M[K] : C(R2) → R given by

M[K](ϕ) := (d + 2)!

∫
Sd+2

ϕ
( d+3∑
j=1

k j tj
)
dt1 · · · dtd+2, ϕ ∈ C(R2), (1.8)

with Sn := {(t1, . . . , tn+1) ∈ R
n+1 : ti ≥ 0,

∑n+1
i=1 ti = 1}, the unit simplex in Rn, n ∈ N. If area〈K〉 = 0 then M[K]

can be identified with a function M[K] : R2 → R, and we write (1.8) in the form

∫
Rs

M[K](x)ϕ(x)dx = (d + 2)!

∫
Sd+2

ϕ
( d+3∑
j=1

k j tj
)
dt1 · · · dtd+2, , ϕ ∈ C(R2). (1.9)

We mention the following well-known properties of M[K] [22, 24] and Q[K].

1. Q[K] and M[K] are piecewise polynomials of degree d = #K − 3 witht support 〈K〉.

2. Local smoothness: Across a knot line, which is a line in the complete graph associated with K , we have that

M[K],Q[K] ∈ Cd+1−m, where m is the number of knots on that knot line, including multiplicities.

3. Differentiation formula: For u = (u1,u2) ∈ R2 and any choice of a1, . . . ,ad+3 such that
∑

j aj k j = u,∑
j aj = 0, one has

DuM[K] = (d + 2)

d+3∑
j=1

aj M[K \ k j], DuQ[K] = d
d+3∑
j=1

aj Q[K \ k j], (1.10)

where Du := u1D1 + u2D2 and D1,D2 denotes partial derivatives. (A-recurrence)

4. Recurrence relation: For any x ∈ R2 and any b1, . . . , bd+3 such that
∑

j bj k j = x,
∑

j bj = 1, one has

M[K](x) =
d + 2

d

d+3∑
j=1

bjM[K \ k j](x), Q[K](x) =

d+3∑
j=1

bjQ[K \ k j](x). (1.11)

(B-recurrence)

5. Knot insertion formula: For any y ∈ R2 and any c1, . . . , cd+3 such that
∑

j cj k j = y,
∑

j cj = 1, one has

M[K] =

d+3∑
j=1

cjM[K ∪ y \ k j], Q[K] =

d+3∑
j=1

cjQ[K ∪ y \ k j]. (1.12)

(C-recurrence)
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Fig. 1.1 The Clough–Tocher split, T = 〈p1, p2, p3 〉, T1 := 〈p
T
, p2, p3 〉, T2 := 〈p

T
, p3, p1 〉 and T3 := 〈p

T
, p1, p2 〉

6. Degree zero: For K = {k1, k2, k3}

M[K](x) :=
1

area(〈K〉)
, Q[K](x) :=

area(T )

area(〈K〉)
, x ∈ 〈K〉o,

M[K](x) := Q[K](x) = 0, x < 〈K〉,

(1.13)

where So is the interior of the set S. The values of M[K] and Q[K] on the boundary of 〈K〉 has to be dealt

with separately, see below.

We refer to [22, 24] for further properties of M[K].

1.3 The Clough-Tocher split and a basis for Sr
3r

Given a nondegenerate triangle T inR2, we connect the vertices p1, p2, p3 to the barycenter pT := (p1+ p2+ p3)/3.

With this construction, known as the Clough–Tocher split , we obtain three subtriangles T1 := 〈pT , p2, p3〉,

T2 := 〈pT , p3, p1〉 and T3 := 〈pT , p1, p2〉, see Figure 1.1.

We consider the spline space Sr
d
( ) with respect to these three subtriangles on T . To obtain a unique function

value at each point in T we associate the half open edges

〈pi, pT ) := {(1 − t)pi + t pT : 0 ≤ t < 1}, i = 1,2,3,

to the three subtriangles of T as follows

〈p1, pT 〉 ∈ T2, 〈p2, pT 〉 ∈ T3, 〈p3, pT 〉 ∈ T1, (1.14)

and we somewhat arbitrarily associate the point pT to T2.

The dimension of the space Sr
d
( ) is given in the following proposition. It follows from Theorem 9.3 in [17]

with n = mv = 3.

Proposition 1 We have

dim Srd( ) =

(
r + 2

2

)
+ 3

(
d − r + 1

2

)
+

d−r∑
j=1

(r + 1 − 2 j)+ � (1.15)

We focus on a special collection of simplex splines on the Clough–Tocher split of a single triangle in the

following way: for integers i, j, k, ℓ, we consider the simplex spline Q
[
p
{i }

1
, p

{ j }

2
, p

{k }

3
, p

{ℓ }

T

]
, where p

{m}

j
, means

that the vertex p j has multiplicity m, i. e., is repeated m times. For brevity, we will also use two alternative notations,

a more compact, and a more illustrative one, namely,

Q
[
p
{i }

1
, p

{ j }

2
, p

{k }

3
, p

{ℓ }

T

]
=: [i, j, k; ℓ] =: i jkℓ =:

k

ℓ

ji

, i, j, k, ℓ ∈ N0. (1.16)
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We note that i jkℓ is a simplex spline of degree d = i + j + k + ℓ − 3, and by the local smoothness property

has smoothness d + 1 − i − ℓ across the knotline 〈p1, pT 〉 for ℓ > 0. In this notation, the Bernstein polynomials

Bi jk(u, v,w) :=
(i+j+k)!
i!j!k!

uiv jwk of degree d = i + j + k have the form

Bi jk = i+1, j+1,k+1,0 =

k + 1

0

j + 1i + 1

, i + j + k = d. (1.17)

We will use the more graphic form on the right hand side of (1.16) whenever possible to make the basic ideas

more accessible, but it is convenient to use the more compact notations in computations. For i, j, k ∈ N, the

knot insertion formula (1.12) for the insertion of a knot at the barycenter can be written

k

ℓ

ji

=

1

3

( k

ℓ + 1

ji − 1

+

k

ℓ + 1

j − 1i

+

k − 1

ℓ + 1

ji

)
. (1.18)

Definition 1 The number µ := d + 1 − r is called the maximum multiplicity of an interior knot line of the simplex

spline i jkℓ .

Some obvious properties for simplex splines to be in Sr
d
( ) are listed in the following lemma.

Lemma 1 If i jkℓ ∈ Sr
d
( ) then

1. i + j + k + ℓ = d + 3 = µ + r + 2,

2. if, in addition, ℓ , 0 then regularity Cr implies max{i, j, k} + ℓ ≤ µ. �

Next, let us turn to splines of degree 3r , and focus on specific elements of Sr
3r
( ) that will turn out to be useful.

The three types are categorized by whether max{i, j, k} + ℓ equals µ, exceeds it or is strictly less than µ, where the

second case occurs only for ℓ = 0.

Definition 2 Let Σr
3r

denote the set of elements i jkℓ of Sr
3r
( ) that consists of the elements of the following

three types:

Type (1): max{i, j, k} + ℓ = µ and min{i, j, k} ≥ 1,

Type (2): ℓ = 0 and max{i, j, k} > µ,
Type (3): max{i, j, k} + ℓ < µ and min{i, j, k} = 1.

Remark 1 The types are symmetric with respect to i, j, k, i. e., all subclasses are closed under permutation of the

indices.

For r = 1,2,3,4, Definition 2 results in the following set of splines.

Example 1 For r = 1, d = 3, µ = 3, dim S1
3
( ) = 12 we have

1. Type (1): 9 elements

1

1

22

1

0

23

and symmetries

2. Type (2): 3 elements

1

0

14

and symmetries,

3. Type (3): 0 elements.

Example 2 For r = 2, d = 6, µ = 5, dim S2
6
( ) = 37 the different types look as follows:

1. Type (1): 25 elements

2

3

22

2

2

23

1

2

33

2

1

24

1

1

34

2

0

25

1

0

35

and symmetries,
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2. Type (2) 9 elements

1

0

26

1

0

17

and symmetries

3. Type (3): 3 elements

1

0

44

and symmetries.

Example 3 In the case r = 3, d = 9, µ = 7, dim S3
9
( ) = 75 we get

1. Type (1): 48 elements

2

4

33

2

3

34

1

3

44

2

2

35

1

2

45

2

1

36

1

1

46

2

0

37

1

0

47

and

symmetries,

2. Type (2): 18 elements

2

0

28

1

0

38

1

0

29

1

0

110

and symmetries

3. Type (3): 9 elements

1

0

56

1

1

55

and symmetries

Example 4 For r = 4, d = 12, µ = 9, dim S4
12
( ) = 127, the elements look as follows:

1. Type (1): 79 elements

3

6

33

3

5

34

2

5

44

3

4

35

2

4

45

1

4

55

3

3

36

2

3

46

1

3

56

3

2

37

2

2

47

1

2

57

3

1

38

2

1

48

1

1

58

3

0

39

2

0

49

1

0

59

and symmetries,

2. Type (2): 30 elements

2

0

310

1

0

410

2

0

211

1

0

311

1

0

212

1

0

113

and symmetries

3. Type (3): 18 elements

1

2

66

1

1

67

1

0

68

1

0

77

and symmetries

Remark 2 Some Bernstein polynomials are not of any of the three types and thus are not in the basis. A Bernstein

polynomial in the basis can be of Type (1), (2) or (3), see Figure 1.2 and the previous examples.

One central result of this paper, stated in Theorem 1, is that Σr
3r

is in fact a basis for Sr
3r
( ). The proof of

this fact will consist of showing that Σr
3r

is a subset of dim(Sr
3r
( )) linearly indenpendent elements of the space

S
r
3r
( ).

To count the number of elements of Σr
3r

, we start with some bounds of ℓ with respect to the different types of

functions in Σr
3r

.
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Removed

Type (1)

Type (2)

Type (1)

Type (2)

Type (3)

Removed

Type (1)

Type (2)

Type (3)

Removed

Fig. 1.2 Domain points of the Bernstein polynomials used in the CTS basis, left: r = 1, d = 3, middle: r = 2, d = 6, right:

r = 3, d = 9. “Removed” means that the respective Bernstein polynomials are of none of the Types (1), (2) or (3).

Lemma 2 For Type (1) we have ℓ ≤ d − 3r/2 while for Type (3) ℓ ≤ d − 2r − 2 holds.

Proof For a Type (1) element, assume that i + ℓ = µ, then j + ℓ ≤ µ and k + ℓ ≤ µ, hence i + j + k + 3ℓ ≤ 3µ.

Since i + j + k + ℓ = d + 3 and µ = d − r + 1, we thus deduce that d + 3 + 2ℓ ≤ 3d + 3 − 3r or ℓ ≤ d − 3r/2.

For Type (3), we assume that k = 1, hence i + ℓ ≤ µ − 1 and j + ℓ ≤ µ − 1, then i + j + k + 2ℓ ≤ 2µ − 1. Since

i + j + k + ℓ = d + 3 and µ = d − r + 1, it follows that d + 3 + ℓ ≤ 2d − 2r + 2 − 1 or ℓ ≤ d − 2r − 2.

�

Next we prove that the sum of the numbers of elements of the three types is exactly the dimension of dim Sr
3r
( ).

Proposition 2 For r ≥ 1 and d = 3r , we have the following table according to the parity of r .

r 2s, s > 0 2s + 1, s ≥ 0

d 6s 6s + 3

dimSr
d
( ) 27s2

+ 9s + 1 3(9s2
+ 12s + 4)

#T ype(1) 3s(5s + 3) + 1 3(s + 1)(5s + 3)

#T ype(2) 3s(2s + 1) 3(s + 1)(2s + 1)

#T ype(3) 3s(2s − 1) 3s(2s + 1)

(1.19)

Hence,

#T ype(1) + #T ype(2) + #T ype(3) = dim Sr3r ( ), r ≥ 1. (1.20)

Proof We begin with r of even parity, i. e., r = 2s, d = 3r = 6s, µ = 4s + 1, i + j + k + ℓ = 6s + 3 and count the

basis elements of different types.

1. Type (1): According to Lemma 2 we have ℓ ≤ d − 3r/2 = 3s and a generic element of Type (1) is of the form

[i = s + p + 1, j, k = 2s + 2 − j; 3s − p], 1 ≤ j ≤ i, 1 ≤ k ≤ i, (1.21)

from which it follows that s − p + 1 ≤ j ≤ 2s + 1 and p = 0, . . . ,3s. We count the number of elements with

respect to p:

a. For p = 0: 1 element.

The only possible choice is [s + 1, s + 1, s + 1; 3s].
b. For 1 ≤ p ≤ s: 6p elements.

The elements [i, j, k; 3s − p] are of the form

[s + p + 1, s − p + 1 + q, s + p + 1 − q; 3s − p], q = 0, . . . ,2p − 1, (1.22)

i. e., i = s + p + 1, j = s − p + 1 + q, s + p + 1 − q, and with the permutations [i, j, k], [ j, k, i] and [k, j, i],
which gives 3 elements for any q in (1.22). We notice that in two cases we obtain the same three elements up

to the permutation, namely, for q = 0 the values i = k = s + p + 1, j = s − p + 1, and for q = 2p the values

i = j = s + p + 1, k = s − p + 1. In the other cases, 0 < q < 2p, we have j = s − p + 1 + q < i = s + p + 1

and k = s + p + 1 − q < i = s + p + 1, so that the elements are different.

c. For s + 1 ≤ p ≤ 3s: 6s + 3 elements

consisting of

[s + p + 1,q + 1,2s − q + 1; 3s − p], q = 0, . . . ,2s, (1.23)

and again the permutations [i, j, k], [ j, k, i], [k, j, i].
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Hence the total number of elements of Type (1) is

1 +

s∑
p=1

6p +
3s∑

p=s+1

(6s + 3) = 1 + 3s(s + 1) + 2s(6s + 3) = 1 + 3s(5s + 3)

as listed in (1.19).

2. Type (2) requires ℓ = 0 by definition and the generic elements of the form

[i = 4s + 2 + p, j, k = s + 1 − j − p; 0], 1 ≤ j ≤ i, i ≤ k ≤ i, (1.24)

with the additional constraint i ≥ µ + 1 = 4s + 2 that leads to 1 ≤ j ≤ 2s − p, p = 0, . . . ,2s − 1. This gives

3(2s − p) elements

[4s + 2 + p,q + 1,2s − p − q; 0], q = 0, . . . ,2s − p − 1, (1.25)

and the respective permutations so that the total number of elements of Type (2) is

2s−1∑
p=1

3(2s − p) =
2s∑
q=1

q = 3s(2s + 1)

in this case.

3. Type (3): up to symmetry we can assume that k = 1 and, by Lemma 2 that ℓ ≤ d − 2r − 2 = 2s − 2. The generic

element is of the form

[i, j = 4s + 4 + p − i, k = 1; ℓ = 2s − 2 − p], i + ℓ ≤ µ − 1 = 4s, j + ℓ ≤ 4sp = 0, . . . ,2s − 2, (1.26)

since i + j + k + ℓ = d + 3 = 6s + 3. Hence, for 0 ≤ p ≤ 2s − 2 we get 3(p + 1) elements

[2s + 2 + p − q,2s + 2 + q,1; 2s − 2 − p], q = 0, . . . , p, (1.27)

and the permutations [i, j, k], [ j, k, i], [k, j, i], leading to a total of

2s−2∑
p=0

3(p + 1) = 3s(2s − 1)

elements of Type (3).

In the case of odd parity, i. e., r = 2s + 1, d = 3r = 6s + 3, µ = 4s + 3, i + j + k + ℓ = 6s + 6, we proceed in the

same way and distinguish by types.

1. For Type (1) we have the bound ℓ ≤ 3s + 1 and the generic element

[i = s + p + 2, j, k = 2s + 3 − j; 3s + 1 − p], 1 ≤ j ≤ i 1 ≤ k ≤ i, p = 0, . . . ,3s + 1. (1.28)

Again, Type (1) request the distinction of several cases according to p.

a. For 0 ≤ p ≤ s: 6p + 3 elements

The generic elements are

[s + p + 2, s + 1 − p + q, s + 2 + p − q; 3s + 1 − p], q = 0, . . . ,2p, (1.29)

and the permutations [i, j, k], [ j, k, i], [k, j, i]. Again, we notice that we obtain the same three elements up to

the permutations for q = 0, namely i = k = s+p+2, j = s−p+1, and for q = 2p+1, namely i = j = s+p+2,

k = s − p+ 1, respectively. For 0 < q < 2p, on the other hand, we have j = s + 1− p+ q < i = s + p+ 2 and

k = s + 2 + p − q < i = s + p + 2 so that all the elements are different again, just like in the case of even r .

b. For s + 1 ≤ p ≤ 3s + 1: 6(s + 1) elements

based on the generic element

[s + p + 2,q + 1,2s − q + 2; 3s + 1 − p], q = 0, . . . ,2s + 1, (1.30)

and its permutations.

Therefore, the total number of elements of Type (1) is
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s∑
p=0

(6p + 3) +

3s+1∑
p=s+1

6(s + 1) = 3(s + 1)(5s + 3).

2. Type (2) again requests ℓ = 0 and leads to 3(2s + 1 − p) elements based on the generic element

[4s + 4 + p,q + 1,2s + 1 − p − q; 0], q = 0, . . . ,2s − p, (1.31)

and its permutations, so that the total number of elements of Type (2) is

2s∑
p=0

3(2s + 1 − p) = 3(s + 1)(2s + 1).

3. For Type (3) we again assume that k = 1, note ℓ ≤ d − 2r − 2 = 2s − 1 and obtain 3(p + 1) elements from the

generic element

[2s + 3 + p − q,2s + 3 + q,1; 2s − 1 − p], q = 0, . . . , p (1.32)

and its permutations totalling up to
2s−1∑
p=0

3(p + 1) = 3s(2s + 1)

elements of Type (3). �

Having completed the table in (1.19) the claim (1.20) follows from summing up the columns of the table.

�

Theorem 1 Σr
3r

is a basis of Sr
3r

.

We prove Theorem 1 by verifying in Proposition 3 that the elements of Σr
3r

are linearly independent. Since we

already know from Proposition 2 that #Σr
3r
= dim Sr

3r
, this indeed shows that they are a basis of the spline space.

Consequently, Σr
3r

spans the space of all simplex splines contained Sr
3r

. We give an independent proof of this fact

in Proposition 8 in the appendix as it may be of independent interest and motivates the classification of the simplex

splines according to the three types.

To prove linear independence, we need the following technical tool concerning particular derivatives of simplex

splines.

Lemma 3 For i > 0 We have that

Dp1−x [i, j, k; ℓ](x) = d
(

[i − 1, j, k; ℓ](x) − [i, j, k; ℓ](x)
)
, (1.33)

while

Dp1−x [0, j, k; ℓ](x) =d
(
3 [0, j, k; ℓ − 1](x)

− [0, j − 1, k; ℓ](x) − [0, j, k − 1; ℓ](x) − [0, j, k; ℓ](x)
)
.

(1.34)

Proof Write x =
∑
αj p j , with

∑
αj = 1. Then the derivative formula and the recurrence yield that

Dp1−x [i, j, k; ℓ](x) = d
(
(1 − α1) [i − 1, j, k; ℓ](x) − α2 [i, j − 1, k; ℓ](x) − α3 [i, j, k − 1; ℓ](x)

)
= d [i − 1, j, k; ℓ](x) − d

(
α1 [i − 1, j, k; ℓ](x) + α2 [i, j − 1, k; ℓ](x) + α3 [i, j, k − 1; ℓ](x)

)
= d

(
[i − 1, j, k; ℓ](x) − [i, j, k; ℓ](x)

)
,

which is (1.33). For the second identity we note that pT =
1
3
(p1 + p2 + p3) implies p1 = 3pT − p2 − p3 and hence,

writing x = αT pT + α2 p2 + α3p3 with
∑
αj = 1, we obtain that

Dp1−x [0, j, k; ℓ](x)

= d
(
(3 − αT) [0, j, k; ℓ − 1](x) − (1 + α2) [0, j − 1, k; ℓ](x) − (1 + α3) [0, j, k − 1; ℓ](x)

)
which can be recombined as above to yield (1.34).

�
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Since for i, j, k, l ∈ N0, and x ∈ T with barycentric coordinates β1, β2, β3 with respect to p1, p2, p3, we have

[0, j + 1, k + 1; ℓ + 1](x) =
( j + k + ℓ)!

j!k!ℓ!
(β2 − β1)

j(β3 − β1)
k(3β1)

ℓ, x ∈ T1,

[i + 1,0, k + 1; ℓ + 1](x) =
(i + k + ℓ)!

i!k!ℓ!
(β1 − β2)

i(β3 − β2)
k(3β2)

ℓ, x ∈ T2,

[i + 1, j + 1,0; ℓ + 1]x) =
(i + j + ℓ)!

i! j!ℓ!
(β1 − β3)

i(β2 − β3)
j(3β3)

ℓ, x ∈ T3,

[i + 1, j + 1, k + 1; 0](x) =
(i + j + k)!

i! j!k!
βi1β

j

2
βk3 = Bd

ijk(x), x ∈ T ,

(1.35)

we observe that the formula (1.34) in fact corresponds to taking a partial derivative with respect to β1 in (1.35).

Proposition 3 The elements of Σr
3r

are linearly independent.

Proof Denote by

Ir := I(Σr3r ) =
{
(i, j, k, ℓ) : [i, j, k; ℓ] ∈ Σr3r

}
(1.36)

the set of all knot multiplicities of splines in Σr
3r

. Now assume that there exist coefficients ai jkℓ such that

s :=
∑

(i, j ,k ,ℓ)∈Ir

ai jkℓ [i, j, k; ℓ] = 0.

On the boundary
〈
p2, p3

〉
we have [i, j, k; ℓ] , 0 if and only if i = 1 and ℓ = 0 and the splines [1, j, k; 0]

reduce to univariate Bernstein polynomials that can with ℓ = 0, be classified as follows:

1. Type (1): [1, µ − ℓ, ℓ + r + 1; 0],

2. Type (2): [1, µ + m,r + 1 − m; 0], 1 ≤ m ≤ r ,

3. Type (3): [1, µ − ℓ − m, ℓ + r + 1 + m; 0], 1 ≤ m ≤
µ−r−1

2
− ℓ, �

together with their symmetric elements where j and k are interchanged. Recall that if these symmetries coincide

they are considered as only one element in Σr
3r

. These Bernstein polynomials are linearly independent within the

same type by construction and between types since the maximal multiplicity is = µ − ℓ in Type (1), > µ − ℓ

in Type (2) and < µ − ℓ in Type (3). Therefore, restricting s to the boundary
〈
p2, p3

〉
, it follows that ai jkℓ = 0

for (i, j, k, ℓ) = (1, j, k,0). Considering the other boundaries of T , we can thus conclude that ai jkℓ = 0 whenever

min{i, j, k} = 1 and ℓ = 0.

Starting from this observation, we prove by induction on m = 1,2, . . . that

ai jkℓ = 0, min{i, j, k} + ℓ = m, (1.37)

where the case m = 1 has been treated in the first part of this proof. We will treat the case m = 2 explicitly as the

general procedure will become clear by then. We assume that i is the minimal value, consider the identity

0 = Dp1−xs(x), x ∈
〈
p2, p3

〉
and find by Lemma 3 that there are only two types of splines which are nonzero on the boundary. The first is

Dp1−x [2, j, k; 0](x) = [1, j, k; 0](x) − [2, j, k; 0](x)

which coincides with [1, j, k; 0](x) on
〈
p2, p3

〉
. The second is

Dp1−x [1, j, k; 1](x) = [0, j, k; 1](x) − [1, j, k; 1](x),

which by (1.35) coincides with [0, j, k; 1] = [1, j, k; 0] on
〈
p2, p3

〉
. Again, these splines are linearly indepen-

dent within the types by construction and across the types by the different values of the maximal multiplicity, and

(1.37) for m = 2 follows by considering all three faces of T by a symmetry argument.

The general induction step proceeds in exactly this way by assuming that i = min{i, j, k} and i + ℓ = m + 1 and

applying (1.33) i times we find from (1.35) with x = (β1, β2, β3) and ℓ = m + 1 − i

Di
p1−x

[i, j, k; ℓ](x) = K [0, j, k; ℓ](x) =
( j + k + ℓ)!

j!k!ℓ!
(β2 − β1)

j(β3 − β1)
k(3β1)

ℓ

for some connstant K . Differentiating ℓ times with respect to β1 and setting β1 = 0 we find
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∂ℓ

∂βℓ
1

Di
p1−x

[i, j, k; ℓ](x) = Kβ j
2
βk3 ,

where again K is some nonzero constant. where the admissible values for j, k lead to linearly independent

polynomials on the boundary. This completes the proof of Proposition 3.

�

Example 5 We illustrate the elimination procedure of Proposition 3 for the case r = 3.

The elimination proceudre starts by considering the Bernstein polynomials

1

0

47

1

0

38

1

0

29

1

0

110

1

0

56

on the “lower” edge of the triangle where alle other simplex splines from our list vanish. Note that the three types

are then distinguished by whether the maximum equals µ = 7 (the element on the left), exceeds this values (the

three elements in the middle) or is strictly smaller (the element on the right). Therefore, the coefficients of these

splines and all their symmetries have to vanish which deals with the first “ring” of coefficients on the boundary.

Applying the differential operator Dp1−x once, gives us the Bernstein polynomials

1

0

37

1

0

28

of Type (1) and (2). As the list for r = 4 shows, Type (3) elements are not excluded in principle. In addition, we

get the splines

0

1

46

0

1

55

which also reduce to nonvanishing univariate Bernstein polynomials on the boundary. This finishes off all elements

with min{i, j, k} + ℓ = 2 and especially all elements of the Types (2) and (3) for r = 2.

The application of D2
p1−x

gives us

D2
p1−x

1

2

45

= 3

0

1

45

−

0

2

44

−

0

2

35

→ 3

0

1

45

since the two Berstein polynomias which are subtracted vanish on the boundary. The other nonvanishing element

is

0

1

36

.

Now it should be clear how the process is completed: D3
p1−x

extracts the nonzero polynomials

0

1

44

0

1

35

together with their symmetries and applying D4
p1−x

and D5
p1−x

we get

0

1

34

and

1

0

33

,
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respectively. Observe that in each step of the process always Bernstein polynomials of the same fixed degree are

considered on the boundary.

1.4 Marsden-like Identity, Domain points, Stability and C
r–connection

A Marsden-like identity allows us to derive explicit formulas for the representation of polynomials of degree up

to 3r in the simplex spline basis of Sr
3r
( ). Even if we have identified a basis of Sr

3r
( ), it turns out that for

the partition of unity and the Marsden-like identity alone, i.e., for the generation of polynomials and espcially the

constant function, we do not need all the elements of that basis. Hence, instead of having redundancy or a null

component in the sums, we remove one further element according to the following definition.

Definition 3 Depending on the parity of r , we define the following sets and spaces:

1. If r = 2s + 1 with s ≥ 0, then

Σ̄
r
3r := Σr3r , S̄

r
3r ( ) = Sr3r ( ).

2. If r = 2s then

Σ̄
r
3r := Σr3r \

{
(s + 1, s + 1, s + 1; 3s)

}
, S̄

r
3r ( ) := span Σ̄r3r .

In analogy with (1.36), the set of indices (i, j, k, ℓ) of the basis Σ̄r
3r

will be written as Īr . Moreover, for the Bernstein

polynomials in Σ̄r
3r

(cf. Figure 1.2), we define the index sets

Ir
removed := {(i, j, k) : i + j + k = 3r, max{i, j, k} ≤ 2r − 1, min{i, j, k} ≥ 1},

Ir
Bernstein := {(i, j, k) : i, j, k ∈ N0, i + j + k = 3r} \ Ir

removed.
(1.38)

It immediately follows that

#Ir
Bernstein =

3

2
r(r + 5), #Ir

removed = 3r(r − 1) + 1 #Ir
Bernstein + #Ir

removed =

(
3r + 2

2

)
= dim P3r . (1.39)

We now consider the cases r = 2,3 in more detail. We prove, using knot insertion, a Marsden-like identity for

r = 2, and state it in a form valid for any r ≥ 1. It is verified symbolically for r ≤ 6.

1.4.1 The C
2 elements, Σ̄2

6

According to Definition 3, we use only 36 elements of Σ̄2
6

with indices from the set Ī2, which corresponds to

removing 2223 from Σ2
6
. In Definition 4 we list these elements, normalized to ensure partition of unity. The set

Σ̄
2
6

consists of Bernstein polynomials as depicted in Figure 1.2, and 15 other simplex splines with at least one knot

at the barycenter of the triangle.

Definition 4 (The functions Σ̄2
6
)

The functions Σ̄2
6

consists of the 21 Bernstein polynomials

S6
i+1, j+1,k+1,0 := i+1, j+1,k+1;0 = B6

i jk, (i, j, k) ∈ I2
Bernstein, (1.40)

and the additional simplex splines

S6
22

:= S6
4311

:=
1

3
4311, S6

23
:= S6

3411
:=

1

3
3411, S6

24
:= S6

1431
:=

1

3
1431,

S6
25

:= S6
1341

:=
1

3
1341, S6

26
:= S6

3141
:=

1

3
3141, S6

27
:= S6

4131
:=

1

3
4131,

S6
28

:= S6
4221

:=
2

3
4221, S6

30
:= S6

2421
:=

2

3
2421, S6

32
:= S6

2241
:=

2

3
2241,

S6
29

:= S6
3312

:=
1

3
3312, S6

31
:= S6

1332
:=

1

3
1332, S6

33
:= S6

3132
:=

1

3
3132,

S6
34

:= S6
3222

:=
2

3
3222, S6

35
:= S6

2322
:=

2

3
2322, S6

36
:= S6

2232
:=

2

3
2232.

(1.41)
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For the numbering of the functions S6
1
, . . . ,S6

21
see Figures 1.3 and the new figure 1.4 below. In the following

we give explicit formulas for the simplex splines in (1.41). On T1 we have

©«

22 {4,3,1,1} β6
1
− 6β2β

5
1
+ 15β2

2
β4

1

23 {3,4,1,1} −β6
1
+ 6β2β

5
1
− 15β2

2
β4

1
+ 20β3

2
β3

1

24 {1,4,3,1} S6
24
(1)

25 {1,3,4,1} S6
25
(1)

26 {3,1,4,1} −β6
1
+ 6β3β

5
1
− 15β2

3
β4

1
+ 20β3

3
β3

1

27 {4,1,3,1} β6
1
− 6β3β

5
1
+ 15β2

3
β4

1

28 {4,2,2,1} 4β6
1
− 12β2β

5
1
− 12β3β

5
1
+ 60β2β3β

4
1

29 {3,3,1,2} 9β6
1
− 36β2β

5
1
+ 45β2

2
β4

1

30 {2,4,2,1} 8β6
1
− 36β2β

5
1
− 12β3β

5
1
+ 60β2

2
β4

1
+ 60β2β3β

4
1
− 40β3

2
β3

1
− 120β2

2
β3β

3
1
+ 120β3

2
β3β

2
1

31 {1,3,3,2} S6
31
(1)

32 {2,2,4,1} 8β6
1
− 12β2β

5
1
− 36β3β

5
1
+ 60β2

3
β4

1
+ 60β2β3β

4
1
− 40β3

3
β3

1
− 120β2β

2
3
β3

1
+ 120β2β

3
3
β2

1

33 {3,1,3,2} 9β6
1
− 36β3β

5
1
+ 45β2

3
β4

1

34 {3,2,2,2} 36β6
1
− 72β2β

5
1
− 72β3β

5
1
+ 180β2β3β

4
1

35 {2,3,2,2} −72β6
1
+ 216β2β

5
1
+ 108β3β

5
1
− 180β2

2
β4

1
− 360β2β3β

4
1
+ 360β2

2
β3β

3
1

36 {2,2,3,2} −72β6
1
+ 108β2β

5
1
+ 216β3β

5
1
− 180β2

3
β4

1
− 360β2β3β

4
1
+ 360β2β

2
3
β3

1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(1.42)

where the first entry denotes the position of the spline with respect to aforementioned ordering, the second the

multiplicity of the knots and the third one the explicit expression on T1, using

S6
24(1) = −10β6

1 + 36β2β
5
1 + 24β3β

5
1 − 45β2

2β
4
1 − 15β2

3β
4
1 − 90β2β3β

4
1 + 20β3

2β
3
1 + 60β2β

2
3β

3
1

+ 120β2
2β3β

3
1 − 90β2

2β
2
3β

2
1 − 60β3

2β3β
2
1 + 60β3

2β
2
3β1

S6
25(1) = −10β6

1 + 24β2β
5
1 + 36β3β

5
1 − 15β2

2β
4
1 − 45β2

3β
4
1 − 90β2β3β

4
1 + 20β3

3β
3
1

+ 120β2β
2
3β

3
1 + 60β2

2β3β
3
1 − 60β2β

3
3β

2
1 − 90β2

2β
2
3β

2
1 + 60β2

2β
3
3β1

S6
31(1) = 90β6

1 − 216β2β
5
1 − 216β3β

5
1 + 135β2

2β
4
1 + 135β2

3β
4
1 + 540β2β3β

4
1

− 360β2β
2
3β

3
1 − 360β2

2β3β
3
1 + 270β2

2β
2
3β

2
1

(1.43)

Here, S6
k
(1) is used to indicate the restriction of S6

k
to the triangle T1. On T2 we have, in the same fashion,

©«

22 {4,3,1,1} −β6
2
+ 6β1β

5
2
− 15β2

1
β4

2
+ 20β3

1
β3

2

23 {3,4,1,1} β6
2
− 6β1β

5
2
+ 15β2

1
β4

2

24 {1,4,3,1} β6
2
− 6β3β

5
2
+ 15β2

3
β4

2

25 {1,3,4,1} −β6
2
+ 6β3β

5
2
− 15β2

3
β4

2
+ 20β3

3
β3

2

26 {3,1,4,1} S6
26
(2)

27 {4,1,3,1} S6
27
(2)

28 {4,2,2,1} 8β6
2
− 36β1β

5
2
− 12β3β

5
2
+ 60β2

1
β4

2
+ 60β1β3β

4
2
− 40β3

1
β3

2
− 120β2

1
β3β

3
2
+ 120β3

1
β3β

2
2

29 {3,3,1,2} 9β6
2
− 36β1β

5
2
+ 45β2

1
β4

2

30 {2,4,2,1} 4β6
2
− 12β1β

5
2
− 12β3β

5
2
+ 60β1β3β

4
2

31 {1,3,3,2} 9β6
2
− 36β3β

5
2
+ 45β2

3
β4

2

32 {2,2,4,1} 8β6
2
− 12β1β

5
2
− 36β3β

5
2
+ 60β2

3
β4

2
+ 60β1β3β

4
2
− 40β3

3
β3

2
− 120β1β

2
3
β3

2
+ 120β1β

3
3
β2

2

33 {3,1,3,2} S6
33
(2)

34 {3,2,2,2} −72β6
2
+ 216β1β

5
2
+ 108β3β

5
2
− 180β2

1
β4

2
− 360β1β3β

4
2
+ 360β2

1
β3β

3
2

35 {2,3,2,2} 36β6
2
− 72β1β

5
2
− 72β3β

5
2
+ 180β1β3β

4
2

36 {2,2,3,2} −72β6
2
+ 108β1β

5
2
+ 216β3β

5
2
− 180β2

3
β4

2
− 360β1β3β

4
2
+ 360β1β

2
3
β3

2

ª®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(1.44)

where
S6

26(2) = −10β6
2 + 24β1β

5
2 + 36β3β

5
2 − 15β2

1β
4
2 − 45β2

3β
4
2 − 90β1β3β

4
2 + 20β3

3β
3
2

+ 120β1β
2
3β

3
2 + 60β2

1β3β
3
2 − 60β1β

3
3β

2
2 − 90β2

1β
2
3β

2
2 + 60β2

1β
3
3β2

S6
27(2) = −10β6

2 + 36β1β
5
2 + 24β3β

5
2 − 45β2

1β
4
2 − 15β2

3β
4
2 − 90β1β3β

4
2 + 20β3

1β
3
2

+ 60β1β
2
3β

3
2 + 120β2

1β3β
3
2 − 90β2

1β
2
3β

2
2 − 60β3

1β3β
2
2 + 60β3

1β
2
3β2

S6
33(2) = 90β6

2 − 216β1β
5
2 − 216β3β

5
2 + 135β2

1β
4
2 + 135β2

3β
4
2 + 540β1β3β

4
2

− 360β1β
2
3β

3
2 − 360β2

1β3β
3
2 + 270β2

1β
2
3β

2
2,

(1.45)
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and finally on T3

©«

22 {4,3,1,1} S6
22
(3)

23 {3,4,1,1} S6
23
(3)

24 {1,4,3,1} −β6
3
+ 6β2β

5
3
− 15β2

2
β4

3
+ 20β3

2
β3

3

25 {1,3,4,1} β6
3
− 6β2β

5
3
+ 15β2

2
β4

3

26 {3,1,4,1} β6
3
− 6β1β

5
3
+ 15β2

1
β4

3

27 {4,1,3,1} −β6
3
+ 6β1β

5
3
− 15β2

1
β4

3
+ 20β3

1
β3

3

28 {4,2,2,1} 8β6
3
− 36β1β

5
3
− 12β2β

5
3
+ 60β2

1
β4

3
+ 60β1β2β

4
3
− 40β3

1
β3

3
− 120β2

1
β2β

3
3
+ 120β3

1
β2β

2
3

29 {3,3,1,2} S6
29
(3)

30 {2,4,2,1} 8β6
3
− 12β1β

5
3
− 36β2β

5
3
+ 60β2

2
β4

3
+ 60β1β2β

4
3
− 40β3

2
β3

3
− 120β1β

2
2
β3

3
+ 120β1β

3
2
β2

3

31 {1,3,3,2} 9β6
3
− 36β2β

5
3
+ 45β2

2
β4

3

32 {2,2,4,1} 4β6
3
− 12β1β

5
3
− 12β2β

5
3
+ 60β1β2β

4
3

33 {3,1,3,2} 9β6
3
− 36β1β

5
3
+ 45β2

1
β4

3

34 {3,2,2,2} −72β6
3
+ 216β1β

5
3
+ 108β2β

5
3
− 180β2

1
β4

3
− 360β1β2β

4
3
+ 360β2

1
β2β

3
3

35 {2,3,2,2} −72β6
3
+ 108β1β

5
3
+ 216β2β

5
3
− 180β2

2
β4

3
− 360β1β2β

4
3
+ 360β1β

2
2
β3

3

36 {2,2,3,2} 36β6
3
− 72β1β

5
3
− 72β2β

5
3
+ 180β1β2β

4
3

ª®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(1.46)

with

S6
22(3) = S6

22 |T3
= −10β6

3 + 36β1β
5
3 + 24β2β

5
3 − 45β2

1β
4
3 − 15β2

2β
4
3 − 90β1β2β

4
3 + 20β3

1β
3
3 + 60β1β

2
2β

3
3

+ 120β2
1β2β

3
3 − 90β2

1β
2
2β

2
3 − 60β3

1β2β
2
3 + 60β3

1β
2
2β3

S6
23(3) = S6

23 |T3
= −10β6

3 + 24β1β
5
3 + 36β2β

5
3 − 15β2

1β
4
3 − 45β2

2β
4
3 − 90β1β2β

4
3 + 20β3

2β
3
3

+ 120β1β
2
2β

3
3 + 60β2

1β2β
3
3 − 60β1β

3
2β

2
3 − 90β2

1β
2
2β

2
3 + 60β2

1β
3
2β3 = 60β2

1β
3
2β3 +O(β2

3)

S6
29(3) = S6

29 |T3
= 90β6

3 − 216β1β
5
3 − 216β2β

5
3 + 135β2

1β
4
3 + 135β2

2β
4
3 + 540β1β2β

4
3

− 360β1β
2
2β

3
3 − 360β2

1β2β
3
3 + 270β2

1β
2
2β

2
3

(1.47)

The restrictions of the simplex splines can even be written in terms of Bernstein polynomials on the three

subtriangles. Here are two examples.

S6
22(3) = S6

4311 |T3
= {B420 − B510 + B600,−B060 + B150 − B240 + B330,

− 10B006 + 4B015 − B024 + 6B105 − 3B114 + B123 − 3B204 + 2B213 − B222 + B303 − B312 + B321}

S6
23(3) = S6

3411 |T3
= {−B600 + B510 − B420 + B330,B240 − B150 + B060,

− 10B006 + 4B105 − B204 + 6B015 − 3B114 + B213 − 3B024 + 2B123 − B222 + B033 − B132 + B231}

Since max{i, j, k} + ℓ ≤ 5 for all elements S6
i jkℓ

∈ Σ̄2
6

with ℓ > 0, it follows from the local smoothness property of

simplex splines that Σ̄2
6
⊆ S̄2

6
( ). Moreover, the number of elements in Σ̄2

6
is equal to the dimension 36 of S̄2

6
( ).

Therefore, the following proposition implies that Σ̄2
6

is a basis for S̄2
6
( ).

The following result is, of course, a special case of Proposition 3, but we provide a direct proof based on the

explicit expressions in the appendix

Proposition 4 The functions in Σ̄2
6

are linearly independent on .

Now we are in position to formulate and prove the announced Marsden identity.

Theorem 2 (Barycentric Marsden-like identity for d = 6)

For u := [u1,u2,u3]
T ∈ R3,β := [β1, β2, β3]

T ∈ R3, with βi ≥ 0, i = 1,2,3 and β1 + β2 + β3 = 1 we have

(uT β)6 =
∑

(i, j ,kℓ)∈Ī2

ρi jkℓ(u)S
6
i jkℓ(β),

where, with ūm,n := (um + un)/2 for m,n = 1,2,3, and ū123 := (u1 + u2 + u3)/3,

ρi+1, j+1,k+1,0(u) = ui1u j

2
uk

3, (i, j, k) ∈ I2
Bernstein, (1.48)

and
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ρ4311(u) = u3
1
u2

2
u3, ρ4131(u) = u3

1
u2u2

3
, ρ3411(u) = u2

1
u3

2
u3,

ρ3141(u) = u2
1
u2u3

3
, ρ1431(u) = u1u3

2
u2

3
, ρ1341(u) = u1u2

2
u3

3
,

ρ4221(u) = u3
1
u2u3ū2,3, ρ2421(u) = u1u3

2
u3ū1,3, ρ2241(u) = u1u2u3

3
ū1,2

ρ3312(u) = u2
1
u2

2
u3ū123, ρ3132(u) = u2

1
u2u2

3
ū123, ρ1332(u) = u1u2

2
u2

3
ū123,

ρ3222(u) = u2
1
u2u3ū2,3ū123, ρ2322(u) = u1u2

2
u3ū1,3ū123, ρ2232(u) = u1u2u2

3
ū1,2ū123.

(1.49)

Proof The barycentric Marsden-like identity follows from the barycentric form (1.3) of the Marsden identity for

Bernstein polynomials by expressing the removed Bernstein polynomials in terms of the elements in Σ̄2
6
. Here are

some details. For (i, j, k) ∈ I2
removed

, where

I2
removed := {(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1), (2,2,2)},

we insert knots at the barycenter using (1.18), (1.41), and find

B6
1,2,3 := 2340 =

(
1341 + 2241 + 2331

)
/3

=

(
1341 + 2241

)
/3 +

(
1332 + 2232 + 2322

)
/9,

B6
1,3,2 =

(
1431 + 2421

)
/3 +

(
1332 + 2232 + 2322

)
/9,

B6
2,1,3 =

(
2241 + 3141

)
/3 +

(
3132 + 2232 + 3222

)
/9,

B6
2,3,1 =

(
2421 + 3411

)
/3 +

(
3312 + 2322 + 3222

)
/9,

B6
3,1,2 =

(
4131 + 4221

)
/3 +

(
3132 + 2232 + 3222

)
/9,

B6
3,2,1 =

(
4221 + 4311)

/
3 +

(
3312 + 2322 + 3222

)
/9,

B6
2,2,2 =

(
1332 + 3132 + 3312 + 2 2232 + 2 2322 + 2 3222

)
/9.

(1.50)

By (1.3)

(uT β)6 =
∑

(i, j ,k)∈I2
Bernstein

ui1u j

2
uk

3 B6
i jk(β) +

∑
(i, j ,k)∈I2

removed

ui1u j

2
uk

3 B6
i jk(β).

For (i, j, k) ∈ I2
Bernstein

we have B6
i jk

(β) = S6
i+1, j+1,k+1,0

(β) and hence ρ[i+1, j+1,k+1,0] = ui
1
u j

2
uk

3
. In the second sum

we insert the expressions in (1.50) for B6
i jk

, and collect terms for each i jkℓ to obtain (1.49). We show this for

three typical cases.∑
(i, j ,k)∈I2

removed

ui1u j

2
uk

3 B6
i jk(β) = u1u2

2u3
3 1431(β)/3 +

(
u1u2

2u3
3 + u1u3

2u2
3 + u2

1u2
2u2

3

)
1332(β)/9

+

(
u1u2

2u3
3 + u1u3

2u2
3 + u2

1u2u3
3 + u3

1u2u2
3 + 2u2

1u2
2u2

3

)
2232(β)/9 + · · ·

= u1u2
2u3

3 1431(β)/3 + u1u2
2u2

3ū123 1332(β)/3 + 2u1u2u2
3ū1,2ū123 2232(β)/3 + · · · ,

= u1u2
2u3

3S6
1431(β) + u1u2

2u2
3ū123S6

1332(β) + u1u2u2
3ū1,2ū123S6

2232(β) + · · · ,

and (1.49) follows.

�

Remark 3 Since ρi jkℓ(1,1,1) = 1 for any i j kℓ it follows that∑
(i, j ,k ,ℓ)∈Ī2

S6
i jkℓ(β) = 1.

Corollary 1 (Domain points for d = 6)

The domain points p∗
i jkℓ

in barycentric form, defined as the coefficients in the expansion

β =
∑

(i, j ,k ,ℓ)∈Ī2

p∗i jkℓS6
i jkℓ(β).

are given by
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p∗
i+1, j+1,k+1,0

= (i, j, k)/6, (i, j, k) ∈ I2
Bernstein

,

and moreover

p∗
4311
= (3,2,1)/6, p∗

4131
= (3,1,2)/6, p∗

3411
= (2,3,1)/6,

p∗
3141
= (2,1,3)/6, p∗

1431
= (1,3,2)/6, p∗

1341
= (1,2,3)/6,

p∗
3312
= (7,7,4)/18, p∗

3132
= (7,4,7)/18, p∗

1332
= (4,7,7)/18,

p∗
4221
= (2,1,1)/4, p∗

2421
= (1,2,1)/4, p∗

2241
= (1,1,2)/4,

p∗
3222
= (14,11,11)/36, p∗

2322
= (11,14,11)/36, p∗

2232
= (11,11,14)/36.

(1.51)

Proof By the Marsden-like identity we have

βm =
∑

(i, j ,k ,ℓ)∈Ī2

∂

∂um
ρi jkℓ(1,1,1)S

6
i jkℓ(β), m = 1,2,3,

and (1.51) follows after a straightforward calculation.

�

The indices i, j, k and i, j, k, ℓ for the domain points are shown in Figure 1.3.

600 510 420 330 240 150 060

501 411 321 231 141 051

402 312 222 132 042

303 213 123 033

204 114 024

105 015

006

7110 6210 5310 4410 3510 2610 1710

6120 5220 4311 3411 2520 1620

5130

4221

3312

2421

1530

4140

4131

3222 2322

1431

1440

3132

3141

3150

2232

2241

2250 1350

1341

1332

12602160

1170

Fig. 1.3 Bernstein domain points on the left, Simplex splines domain points on the right.

Next, we define, as usually, the ∞-norm condition number of the Σ̄r
3r

bases for S̄r
3r
( ) by

κd,∞(T ) := max
c,0

‖bT c‖L∞(T)

‖c‖∞
max
c,0

‖c‖∞

‖bT c‖L∞(T)

,

where d = 3r and bT c :=
∑

(i, j ,k ,ℓ)∈Īr ci jkℓSd
ijkℓ

∈ S̄r
d
( ). This number turns out to be bounded by a moderate

number independently of the shape of the basis triangle T .

Proposition 5 (Stability) For any triangle T we have κ6,∞(T ) < 1350.

Proof Since the S6
i jkℓ

, (i, j, k, ℓ) ∈ Ī2 form a nonnegative partition of unity it follows that for any x ∈

|b(x)T c | ≤
∑

(i, j ,k ,ℓ)∈Ī2

|ci jkℓ | |S
6
i jkℓ(x)| ≤ ‖c‖∞

∑
(i, j ,k ,ℓ)∈Ī2

S6
i jkℓ(x) = ‖c‖∞

with an equality if all the ci jkℓ = 1, so that maxc,0‖b
T c‖L∞(T)/‖c‖∞ = 1.

To bound the second part of κ6,∞(T ), we consider a spline s ∈ S̄2
6

interpolating given data at the 36 domain

points. Using the ordering of domain points p∗m and basis functions S6
n, m,n = 1, . . . ,36, shown in Figure 1.4 we

obtain a linear system
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1 2 3 4 5 6 7

8

9

10

11

12

13

14

15

16

17

18 19 20

21

22 23

24

2526

27

28

29

30

31

32

33

34 35

36

Fig. 1.4 The position, left, and ordering of the domainpoints and corresponding basis functions in Figure 1.3, right.

Ac =


S6

1
(p∗

1
) · · · S6

36
(p∗

1
)

...
...

S6
1
(p∗

36
) · · · S6

36
(p∗

36
)



c1

...

c36


=


s(p∗

1
)
...

s(p∗
36
)


= s∗

for the coeffcients c := [c1, . . . , c36]
T of s :=

∑36
n=1 cnS6

n. Here S6
1
, . . . ,S6

21
are Bernstein polynomials, and S6

n(p
∗
m) =

0 for m = 1, . . . ,18 and n = 19, . . . ,36, by continuity properties of simplex splines. Thus A has the lower triangular

block form A =

[
A1 0

A2 A3

]
, where Am,∈ R

18×18, for m = 1,2,3. Using symbolic computation it follows that

A1 and A2 are nonsingular. Thus A is nonsingular with inverse A−1
=

[
B1 0

B2 B3

]
, and B1 = A−1

1 , B3 = A−1
3 ,

B2 = −B3A2B1. We compute

‖A−1‖∞ =
12 209 201 545 461

9 044 604 800
< 1350 −

1

9
,

and the proposition follows.

�

Finally, we consider next the problem of obtaining C2–continuity across an edge between two adjacent triangles

in a global triangulation, making use of the local properties of our simplex spline basis.

We begin with a technical observation.

Lemma 4 On T3 i.e. for 0 ≤ β3 ≤ β1 ≤ 1 and 0 ≤ β3 ≤ β2 ≤ 1

S6
i+1, j+1,k+1,0 = B6

i jk, {(i, j, k) : i + j + k = 6, i ≥ 4 or j ≥ 4},

S6
4311 |T3

= B6
321 − B6

312 − B6
222 +O(β3

3),

S6
3411 |T3

= B6
231 − B6

222 − B6
132 +O(β3

3),

S6
4221 |T3

= 2B6
312 +O(β3

3), S6
3312 |T3

= 3B6
222 +O(β3

3), S
6
2421 |T3

= 2B6
132 +O(β3

3)

S6
3222 |T3

= 6B6
213 +O(β4

3) S6
2322 |T3

= 6B6
123 +O(β4

3).

(1.52)

while S6
i jkℓ

|T3
= O(β3

3
) for the remaining splines.

Proof The set S6
i+1, j+1,k+1,0

with {(i, j, k) : i + j + k = 6, i ≥ 4 or j ≥ 4} are 2 × 6 = 12 classical Bernstein

polynomials on the triangle T , located on the lower left and right corners in Figure 1.3. Using the explicit forms

(1.46) and (1.47), (1.52) follows by inspection.

�

For

s =
∑

(i, j ,k ,ℓ)∈Ī2

ci jkℓS6
i jkℓ

let
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c0 = [c7110, c6210, c5310, c4410, c3510, c2610, c1710]
T ∈ R7,

c1 = [c6120, c5220, c4311, c3411, c2520, c1620]
T ∈ R6,

c2 = [c5130, c4221, c3312, c2421, c1530]
T ∈ R5,

(1.53)

be the coefficients involved in obtaining C2 continuity across an edge between two triangles, see Figure 1.3.

Proposition 6 Let

s =
∑

(i, j ,k ,ℓ)∈Ī2

ci jkℓS6
i jkℓ or s̃ =

∑
(i, j ,k ,ℓ)∈Ī2

c̃i jkℓ S̃6
i jkℓ,

respectively, be defined on the triangle T := 〈p1, p2, p3〉 (resp. T̃ := 〈p1, p2, p̃3〉). We suppose that p̃3 =

λ1p1 + λ2p2 + λ3p3 with λ1 + λ2 + λ3 = 1. The function s+ =

{
s on T

s̃ on T̃
is Cr with r ≤ 2 if and only if


c̃0

...

c̃r


=


C00 . . . C0r

...
...

Cr0 . . . Crr



c0

...

cr


, (1.54)

where the c̃0, c̃1, c̃2 are the coefficients of s̃ corresponding to (1.53), and the matrices Cmn are defined by

C00 = I ∈ R7×7, C01 = 0 ∈ R7×6, C02 = 0 ∈ R7×5, (1.55)

C10 =



λ1 λ2 0 . . . 0

0 λ1 λ2

. . .
.
.
.

.

.

.
. . .

. . .
. . . 0

0 . . . 0 λ1 λ2


∈ R6×7, C11 = λ3I ∈ R6×6, C12 = 0 ∈ R6×5, (1.56)

C20 =



λ2
1

2λ1λ2 λ2
2

0 0 0 0

0 λ2
1
/2 λ1(1/2 + λ2) λ2(1 + λ2)/2 0 0 0

0 0 λ1(1 + λ1)/3 (λ1 + λ2 + 2λ1λ2)/3 λ2(1 + λ2)/3 0 0

0 0 0 λ1(1 + λ1)/2 λ2(1/2 + λ1) λ2
2
/2 0

0 0 0 0 λ2
1

2λ1λ2 λ2
2


∈ R5×7,

C21 =



2λ1λ3 2λ2λ3 0 0 0 0

0 λ1λ3 λ3(1/2 − λ3/2 + λ2) 0 0 0

0 0 λ3(1 − λ3 + 2λ1)/3 λ3(1 − λ3 + 2λ2)/3 0 0

0 0 0 λ3(1/2 − λ3/2 + λ1) λ2λ3 0

0 0 0 0 2λ1λ3 2λ2λ3


∈ R5×6,

C22 = λ2
3
I ∈ R5×5.

(1.57)

Proof We begin by theCr–continuity for the Bézier surfaces using the Bernstein basis. Letσ =
∑

ν+µ+κ=6 γνµκB6
νµκ ∈

P6 be defined on the triangle T := 〈p1, p2, p3〉 (respectively σ̃ =
∑

ν+µ+κ=6 γ̃νµκ B̃6
νµκ ∈ P6 on T̃ := 〈p1, p2, p̃3〉)

where B̃6
νµκ are the Bernstein polynomials with barycentric variables β̃1, β̃2, β̃3.

We recall, see [17, Theorem 2.28], that the function σ+ =

{
σ on T

σ̃ on T̃
is Cr if and only if

[γ̃m]m=0,...,r = [Γmn]m,n=0,...,r [γn]n=0,...,r , (1.58)

where

γ0 = [γ600, γ510, γ420, γ330, γ240, γ150, γ160]
T ,

γ1 = [γ501, γ411, γ321, γ231, γ141, γ051]
T ,

γ2 = [γ402, γ312, γ222, γ132, γ042]
T ,

similarly for the γ̃m and the matrices are defined by

Γ00 = I ∈ R7×7, Γ01 = 0 ∈ R7×6, Γ02 = 0 ∈ R7×5, (1.59)
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Γ10 =



λ1 λ2 0 . . . 0

0 λ1 λ2

. . .
.
.
.

.

.

.
. . .

. . .
. . . 0

0 . . . 0 λ1 λ2


∈ R6×7, Γ11 = λ3I ∈ R6×6, Γ12 = 0 ∈ R6×5, (1.60)

Γ20 =



λ2
1

2λ1λ2 λ2
2

0 . . . 0

0 λ2
1

2λ1λ2 λ2
2

. . .
.
.
.

.

.

.
. . .

. . .
. . .

. . . 0

0 . . . 0 λ2
1

2λ1λ2 λ2
2


∈ R5×7,

Γ21 =



2λ1λ3 2λ2λ3 0 . . . 0

0 2λ1λ3 2λ2λ3

. . .
.
.
.

.

.

.
. . .

. . .
. . . 0

0 . . . 0 2λ1λ3 2λ2λ3


∈ R5×6, Γ22 = λ2

3
I ∈ R5×5.

(1.61)

See also Figure 1.3.

Consider now the function s+ =

{
s on T

s̃ on T̃
on T ∪ T̃ . To study the Cr–continuity through the edge 〈p1p2〉, it

is sufficient to consider s on T3 and s̃ on T̃3. On T3 (resp. T̃3), any S6
i jkℓ

of the basis (resp. S̃6
i jkℓ

) is a polynomial of

degree at most 6, S6
i jkℓ
=

∑
ν+µ+κ=6 w

i jkℓ
νµκ B6

νµκ (resp. S̃6
i jkℓ
=

∑
ν+µ+κ=6 w

i jkℓ
νµκ B̃6

νµκ). So that s |T3
and s̃ |T̃3

can also

be written in the Bernstein bases

s |T3
=

∑
(i, j ,k ,ℓ)∈Ī2

ci jkℓS6
i jkℓ |T3

=

∑
ν+µ+κ=6

γνµκB6
νµκ with γνµκ =

∑
(i, j ,k ,ℓ)∈Ī2

ci jkℓw
i jkℓ
νµκ

s̃ |T̃3
=

∑
(i, j ,k ,ℓ)∈Ī2

c̃i jkℓ S̃6
i jkℓ |T3

=

∑
ν+µ+κ=6

γ̃νµκ B̃6
νµκ with γ̃νµκ =

∑
(i, j ,k ,ℓ)∈Ī2

c̃i jkℓw̃
i jkℓ
νµκ .

From (1.52), we deduce the components w̃
i jkℓ
νµκ for κ = 0,1,2 and we put forward the corresponding components

s |T3
= c7110B6

600 + c6210B6
510 + c5310B6

420 + c4410B6
330 + c3510B6

240 + c2610B6
150 + c1710B6

060

+c6120B6
501 + c5220B6

411 + c4311B6
321 + c3411B6

231 + c2520B6
141 + c1620B6

051

+c5130B6
402 + (2c4221 − c4311)B

6
312 + (3c3312 − c4311 − c3411)B

6
222

+(2c2421 − c3411)B
6
132 + c1530B6

042

+O(β3
3)

and a similar expression for s̃ |T̃3

The conditions for the regularity C0 of s+, (1.55), is a consequence of (1.59) and similarly for C1 with also

(1.56) coming from (1.60). To obtain C2, we add the conditions (1.61). They can be rewritten

c̃5130 = c7110λ
2
1 + 2c6210λ1λ2 + c5310λ

2
2 + 2c5220λ2λ3 + c5130λ

2
3 + 2c6120λ1λ3,

2c̃4221 − c̃4311 = c6210λ
2
1 + 2c5310λ1λ2 + c4410λ

2
2 + 2c4311λ2λ3

+(2c4221 − c4311)λ
2
3 + 2c5220λ1λ3,

3c̃3312 − c̃4311 − c̃3411 = c5310λ
2
1 + 2c4410λ1λ2 + c3510λ

2
2 + 2c3411λ2λ3

+(3c3312 − c4311 − c3411)λ
2
3 + 2c4311λ1λ3

2c̃2421 − c̃3411 = c4410λ
2
1 + 2c3510λ1λ2 + c2610λ

2
2 + 2c2520λ2λ3

+(2c2421 − c3411)λ
2
3 + 2c3411λ1λ3,

c̃1530 = c3510λ
2
1 + 2c2610λ1λ2 + c1710λ

2
2 + c1620λ2λ3 + c1530λ

2
3 + 2c2520λ1λ3. �

We already have c̃4311 and c̃3411 in (1.56) so that we deduce that the last components have to satisfy (1.57).

�

Several examples have been considered for scattered data on the CT-split, see for example [11, 21]. Here, we

consider a surface on two triangles, see Figure 1.5. With the 18 conditions from Proposition 6, we obtain a C2

surface on the two triangles.
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T

T'

Fig. 1.5 A C2 surface on two triangles

1.4.2 The C
3 elements, Σ̄3

9
= Σ

3
9

In this section we repeat the process of the preceding one for r = 3. The methods are the same, but the expression

become more lengthy. For that reason, we essentially list the results.

The partition of unity basis Σ̄3
9

is constructed from the 75 elements i jkℓℓ defined in Example 3 as follows,

S9
i jkℓ
= ci jkℓ i jkℓ, ci jkℓ =




1 if ℓ = 0,

1/3 if (ℓ > 0 and min(i, j, k) = 1) or ℓ = 4,

2/3 if 0 < ℓ < 4 and min(i, j, k) > 1,

{i, j, k, ℓ} ∈ Ī3. (1.62)

Theorem 3 (Barycentric Marsden-like identity for d = 9)

For u := [u1,u2,u3]
T ∈ R3,β := [β1, β2, β3]

T ∈ R3, with βi ≥ 0, i = 1,2,3 and β1 + β2 + β3 = 1 we have

(uT β)9 =
∑

(i, j ,k ,ℓ)∈Ī3

ρi jkℓ(u)S
9
i jkℓ

(β), (1.63)

where

ρi+1, j+1,k+1,ℓ(u) =




ui
1
u j

2
uk

3
, (i, j, k) ∈ I3

Bernstein
,& ℓ = 0,

u2
1
u2

2
u2

3
ū3

123
, ℓ = 4,

umax(i,1)

1
umax(j ,1)

2
umax(k ,1)

3
µi jkℓ ūℓ−1

123
, otherwise .

(1.64)

Here ū123 := (u1 + u2 + u3)/3, and

µi jkℓ :=

{
1, if 1,2 is not among (i,j,k),

(ur + us)/2 if 1,2 is at position r, s in (i, j, k).

Proof As for r = 2 the barycentric Marsden-like identity follows from the barycentric form (1.3) of the Marsden

identity for Bernstein polynomials by expressing the 19 removed Bernstein polynomials B9
i jk

in terms of the

elements in Σ̄3
9
. For (i, j, k) ∈ I3

removed

B9
1,3,5 =

(
1461 + 2361

)
/3 +

(
1452 + 2352

)
/9 +

(
1443 + 2343 + 2433

)
/27

B9
1,5,3 =

(
1641 + 2631

)
/3 +

(
1542 + 2532

)
/9 +

(
1443 + 2433 + 2343

)
/27

B9
5,1,3 =

(
6141 + 6231

)
/3 +

(
5142 + 5232

)
/9 +

(
4143 + 4233 + 3243

)
/27

B9
5,3,1 =

(
6411 + 6321

)
/3 +

(
5412 + 5322

)
/9 +

(
4413 + 4323 + 3423

)
/27

B9
3,5,1 =

(
4611 + 3621

)
/3 +

(
4512 + 3522

)
/9 +

(
4413 + 4323 + 3423

)
/27

B9
3,1,5 =

(
4161 + 3261

)
/3 +

(
4152 + 3252

)
/9 +

(
4143 + 4233 + 3243

)
/27

B9
1,4,4 = 1551/3 +

(
1452 + 1542 + 2352 + 2532

)
/9 + 2

(
2343 + 2433 + 2 1443

)
/27

B9
4,1,4 = 5151/3 +

(
4152 + 5142 + 3252 + 5232

)
/9 + 2

(
3243 + 4233 + 2 4143

)
/27

B9
4,4,1 = 5511/3 +

(
4512 + 5412 + 3522 + 5322

)
/9 + 2

(
3423 + 4323 + 2 4413

)
/27

(1.65)
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B9
2,2,5 =

(
2361 + 3261

)
/3 +

(
2352 + 3252

)
/9

+

(
2343 + 3243

)
/27 +

(
2334 + 3234 + 3324

)
/81

B9
2,5,2 =

(
2631 + 3621

)
/3 +

(
2532 + 3522

)
/9

+

(
2433 + 3423

)
/27 +

(
2334 + 3324 + 3234

)
/81

B9
5,2,2 =

(
6231 + 6321

)
/3 +

(
5232 + 5322

)
/9

+

(
4233 + 4323

)
/27 +

(
3234 + 3324 + 2334

)
/81

B9
2,3,4 =

(
1452 + 2 2352 + 3252 + 2433

)
/9

+

(
2 1443 + 4 2343 + 2 3243 + 3423 + 2334 + 3234 + 3324

)
/27

B9
2,4,3 =

(
1542 + 2 2532 + 3522 + 2343

)
/9

+ 2 1443 + 4 2433 + 2 3423 + 3243 + 2334 + 3234 + 3324

)
/27

(1.66)

B9
4,2,3 =

(
5142 + 2 5232 + 5322 + 3243

)
/9

+

(
2 4143 + 4 4233 + 2 4323 + 2343 + 2334 + 3234 + 3324

)
/27

B9
4,3,2 =

(
5412 + 2 5322 + 5232 + 3423

)
/9

+

(
2 4413 + 4 4323 + 2 4233 + 2433 + 2334 + 3234 + 3324

)
/27

B9
3,4,2 =

(
4512 + 2 3522 + 2532 + 4323

)
/9

+

(
2 4413 + 4 3423 + 2 2433 + 4233 + 2334 + 3234 + 3324

)
/27

B9
3,2,4 =

(
4152 + 2 3252 + 2352 + 4233

)
/9

+

(
2 4143 + 4 3243 + 2 2343 + 4323 + 2334 + 3234 + 3324

)
/27

B9
3,3,3 =

(
2343 + 2433 + 3243 + 3423 + 4233 + 4323

)
/9

+

(
1443 + 4143 + 4413 + 2 2334 + 2 3234 + 2 3324

)
/27

(1.67)

By (1.3) (
u1β1 + u2β2 + u3β3

)9
=

∑
(i, j ,k)∈I3

Bernstein

ui1u j

2
uk

3 B9
i jk

(β) +
∑

(i, j ,k)∈I3
removed

ui1u j

2
uk

3 B9
i jk

(β).

For (i, j, k) ∈ I3
Bernstein

we have B9
i, j ,k

(β) = S9
i+1, j+1,k+1,0

(β) and hence ρ
i+1, j+1,k+1,0

(u) = ui
1
u j

2
uk

3
. In the second sum

we insert the expressions in (1.65)–(1.67) for B9
i jk

, and collect terms for each i jkℓ to obtain (1.63). We show this

for 7 typical cases. Let ūr ,s := (ur + us)/2 for r, s = 1,2,3. Then∑
(i, j ,k)∈I3

removed

ui1u j

2
uk

3 B9
i jk

(β) = u1
1u4

2u4
3 1551(β)/3 +

(
u3

1u1
2u5

3 + u2
1u2

2u5
3

)
3261(β)/3

+

(
u5

1u3
2u1

3 + u4
1u4

2u1
3 + u4

1u3
2u2

3

)
5412(β)/9

+

(
u3

1u5
2u1

3 + u4
1u4

2u1
3 + u2

1u5
2u2

3 + u2
1u4

2u3
3 + 2u3

1u4
2u2

3

)
3552(β)/9

+

(
u5

1u3
2u1

3 + u3
1u5

2u1
3 + 2u4

1u4
2u1

3 + 2u4
1u3

2u2
3 + u3

1u4
2u2

3 + u3
1u3

2u3
3

)
4413(β)/27

+

(
u5

1u1
2u3

3 + u3
1u1

2u5
3 + 2u4

1u1
2u4

3 + u5
1u2

2u2
3 + 4u4

1u2
2u3

3

+ 2u4
1u3

2u2
3 + u3

1u4
2u2

3 + 3u3
1u2

2u4
3 + 3u3

1u3
2u3

3

)
4233(β)/27

+

(
u2

1u2
2u5

3 + u2
1u5

2u2
3 + u5

1u2
2u2

3 + 3u2
1u3

2u4
3 + 3u2

1u4
2u3

3 + 3u4
1u2

2u3
3

+ 3u4
1u3

2u2
3 + 3u3

1u4
2u2

3 + 3u3
1u2

2u4
3 + 6u3

1u3
2u3

3

)
3324(β)/81 + · · ·

= u1
1u4

2u4
3 1551(β)/3 + +2u2

1u1
2u5

3ū1,2 3261(β)/3 + u4
1u3

2u1
3ū123 5412(β)/3 + 2u2

1u4
2u1

3ū1,3ū123 3522(β)/3

+ u3
1u3

2u1
3ū2

123 4413(β)/3 + 2u3
1u1

2u2
3ū2,3ū2

123 4233(β)/3 + u2
1u2

2u2
3ū3

123 3324(β)/3 + · · ·

= u1
1u4

2u4
3S9

1551(β) + u2
1u1

2u5
3ū1,2S9

3261(β) + u4
1u3

2u1
3ū123S9

5412(β) + u2
1u4

2u1
3ū1,3ū123S9

3522(β)

+ u3
1u3

2u1
3ū2

123S9
4413(β) + u3

1u1
2u2

3ū2,3ū2
123S9

4233(β) + u2
1u2

2u2
3ū3

123S9
3324(β) + · · ·

and (1.63) follows.

�
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The barycentric form of the domain points are computed as explained in Corollary 1. For a plot see Figure 1.6.

For the stability, the computation is similar to the proof of Proposition 5, except that since S9
3324
,S9

3234
,S9

2334

have the same domain points (1/3,1/3,1/3). We replace this triple point by the three points (3,3,1)/7, (3,1,3)/7,

(1,3,3)/7 and find

κ9,∞(T ) := max
c,0

‖bT c‖L∞(T)

‖c‖∞
max
c,0

‖c‖∞

‖bT c‖L∞(T)

≃ 159 844.34 . . .
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6321
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Fig. 1.6 Simplex splines domain points on the right, with their positions on the left. S9
3324

, S9
3234

, S9
2334

have the same domain point

(1/3, 1/3, 1/3) as indicated by a *
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Fig. 1.7 Simplex splines domain points on the left, with their sorting on the left. S9
3324

, S9
3234

, S9
2334

indicated by a * have the numbers

73,74,75

C3–continuity through an edge:

Let s =
∑

(i, j ,k ,ℓ)∈Ī3 ci jkℓS9
i jkℓ

(respectively s̃ =
∑

(i, j ,k ,ℓ)∈Ī3 c̃i jkℓ S̃9
i jkℓ

) be defined on the triangle T :=

〈p1, p2, p3〉 (resp. T̃ := 〈p1, p2, p̃3〉). We suppose that p̃3 = λ1p1 + λ2p2 + λ3p3 with λ1 + λ2 + λ3 = 1.

With an extension of the notations of Proposition 6, we define
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c0 = [c10−i,i+1,1,0]
T
i=0,...,9,

c1 = [c9120, c8220, c7320, c6411, c5511, c4611, c3720, c2820, c1920]
T ,

c2 = [c8130, c7230, c6321, c7412, c4512, c3621, c2730, c1830]
T ,

c3 = [c7140, c6231, c5322, c4413, c43522, c2631, c1740]
T .

For r ≤ 3, we connect with smoothness Cr two adjacent triangles in the following proposition.

Proposition 7 Let s =
∑

(i, j ,k ,ℓ)∈Ī2 ci jkℓS9
i jkℓ

(respectively s̃ =
∑

(i, j ,k ,ℓ)∈Ī2 c̃i jkℓ S̃9
i jkℓ

) be defined on the triangle

T := 〈p1, p2, p3〉 (resp. T̃ := 〈p1, p2, p̃3〉). We suppose that p̃3 = λ1p1 + λ2p2 + λ3p3 with λ1 + λ2 + λ3 = 1.

The function s+ =

{
s on T

s̃ on T̃
is Cr with r ≤ 3 if and only if

[c̃m]m=0,...,r = [Cmn]m,n=0,...,r [cn]n=0,...,n, Cmn =∈ R
(10−m)×(10−n) (1.68)

where the nonzero submatrices or components are written below in (1.69) (1.70), (1.71) and (1.72).

The proof of the proposition is a reproduction of the one of Proposition 6, firstly by connecting two polynomials

written in the two corresponding Bernstein basis, then computing the Bernstein polynomials in the Simplex-Splines

basis.

C00 = I ∈ R10×10, (1.69)

C10 =



λ1 λ2 0 . . . 0

0 λ1 λ2

. . .
.
.
.

.

.

.
. . .

. . .
. . . 0

0 . . . 0 λ1 λ2


∈ R9×10, C11 = λ3I ∈ R9×9, (1.70)

C20(1, 1 : 3) = λ2
1

2λ1λ2 λ2
2

C20(2, 2 : 4) = λ2
1

2λ1λ2 λ2
2

C20(3, 3 : 5) =
λ2

1

2
λ1λ2 +

λ1

2

λ2
2

2
+

λ2

2

C20(4, 4 : 6) =
λ2

1

3
+

λ1

3
2λ1λ2

3
+

λ2

3
+

λ1

3

λ2
2

3
+

λ2

3

C20(5, 5 : 7) =
λ2

1

3
+

λ1

3
2λ1λ2

3
+

λ2

3
+

λ1

3

λ2
2

3
+

λ2

3

C20(6, 6 : 8) =
λ2

1

2
+

λ1

2
λ1λ2 +

λ2

2

λ2
2

2

C20(7, 7 : 9) = λ2
1

2λ1λ2 λ2
2

C20(8, 8 : 10) = λ2
1

2λ1λ2 λ2
2

C21(1, 1 : 2) = 2λ1λ3 2λ2λ3

C21(2, 2 : 3) = 2λ1λ3 2λ2λ3

C21(3, 3 : 4) = λ1λ3
2λ2λ3−λ

2
3

2
+

λ3

2

C21(4, 4 : 5) =
2λ1λ3−λ

2
3

3
+

λ3

3

2λ2λ3−λ
2
3

3
+

λ3

3

C21(5, 5 : 6) =
2λ1λ3−λ

2
3

3
+

λ3

3

2λ2λ3−λ
2
3

3
+

λ3

3

C21(6, 6 : 7) =
2λ1λ3−λ

2
3

2
+

λ3

2
λ2λ3

C21(7, 7 : 8) = 2λ1λ3 2λ2λ3

C21(8, 8 : 9) = 2λ1λ3 2λ2λ3

, C22 = λ2
3
I ∈ R8×8,

(1.71)

C30(1, 1 : 4) = λ3
1

3λ2
1
λ2 3λ1λ

2
2

λ3
2

C30(2, 2 : 5) =
λ3

1

2

3λ2
1
λ2

2
+

λ2
1

2

3λ1λ
2
2

2
+ λ1λ2

λ3
2

2
+

λ2
2

2

C30(3, 3 : 6) =
λ3

1

6
+

λ2
1

6

λ2
1
λ2

2
+

λ1λ2

3
+

λ2
1

3
+

λ1

6

λ1λ
2
2

2
+

λ2
2

6
+

2λ1λ2

3
+

λ2

6
+

λ1

6

λ3
2

6
+

λ2
2

3
+

λ2

6

C30(4, 4 : 7) =
λ3

1

9
+

2λ2
1

9
+

λ1

9

λ2
1
λ2

3
+

4λ1λ2

9
+

λ2

9
+

2λ2
1

9
+

2λ1

9

λ1λ
2
2

3
+

2λ2
2

9
+

4λ1λ2

9
+

2λ2

9
+

λ1

9

λ3
2

9
+

2λ2
2

9
+

λ2

9

C30(5, 5 : 8) =
λ3

1

6
+

λ2
1

3
+

λ1

6

λ2
1
λ2

2
+

2λ1λ2

3
+

λ2

6
+

λ2
1

6
+

λ1

6

λ1λ
2
2

2
+

λ2
2

3
+

λ1λ2

3
+

λ2

6

λ3
2

6
+

λ2
2

6

C30(6, 6 : 9) =
λ3

1

2
+

λ2
1

2

3λ2
1
λ2

2
+ λ1λ2

3λ1λ
2
2

2
+

λ2
2

2

λ3
2

2

C30(7, 7 : 10) = λ3
1

3λ2
1
λ2 3λ1λ

2
2

λ3
2

(1.72)
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C31(1, 1 : 2) = 3λ2
1
λ3 6λ1λ2λ3

C31(1, 3) = 3λ2
2
λ3

C31(2, 2 : 3) =
3λ2

1
λ3

2
3λ1λ2λ3 + λ1λ3

C31(2, 4) =
λ3

3
−3λ2λ

2
3
+3λ2

2
λ3

2
+

2λ2λ3−λ
2
3

2

C31(3, 3 : 4) =
λ2

1
λ3

2
+

λ1λ3

3

2λ3
3
−3λ2λ

2
3
−3λ1λ

2
3
+6λ1λ2λ3

6
+

2λ2λ3−λ
2
3

6
+

2λ1λ3−λ
2
3

3
+

λ3

6

C31(3, 5) =
λ3

3
−3λ2λ

2
3
+3λ2

2
λ3

6
+

2λ2λ3−λ
2
3

3
+

λ3

6

C31(4, 4 : 5) =
λ3

3
−3λ1λ

2
3
+3λ2

1
λ3

9
+

2(2λ1λ3−λ
2
3)

9
+

λ3

9

2λ3
3
−3λ2λ

2
3
−3λ1λ

2
3
+6λ1λ2λ3

9
+

2(2λ2λ3−λ
2
3)

9
+

2(2λ1λ3−λ
2
3)

9
+

2λ3

9

C31(4, 6) =
λ3

3
−3λ2λ

2
3
+3λ2

2
λ3

9
+

2(2λ2λ3−λ
2
3)

9
+

λ3

9

C31(5, 5 : 6) =
λ3

3
−3λ1λ

2
3
+3λ2

1
λ3

6
+

2λ1λ3−λ
2
3

3
+

λ3

6

2λ3
3
−3λ2λ

2
3
−3λ1λ

2
3
+6λ1λ2λ3

6
+

2λ2λ3−λ
2
3

3
+

2λ1λ3−λ
2
3

6
+

λ3

6

C31(5, 7) =
λ2

2
λ3

2
+

λ2λ3

3

C31(6, 6 : 7) =
λ3

3
−3λ1λ

2
3
+3λ2

1
λ3

2
+

2λ1λ3−λ
2
3

2

C31(6, 8) = 3λ1λ2λ3 + λ2λ3
3λ2

2
λ3

2

C31(7, 7 : 8) = 3λ2
1
λ3 6λ1λ2λ3

C31(7, 9) = 3λ2
2
λ3

C32(1, 1 : 2) = 3λ1λ
2
3

3λ2λ
2
3

C32(2, 2 : 3) =
3λ1λ

2
3

2

6λ2λ
2
3
−2λ3

3

2
+ λ2

3

C32(3, 3 : 4) =
6λ1λ

2
3
−2λ3

3

6
+

λ2
3

3

9λ2λ
2
3
−6λ3

3

6
+ λ2

3

C32(4, 4 : 5) =
9λ1λ

2
3
−6λ3

3

9
+

2λ2
3

3

9λ2λ
2
3
−6λ3

3

9
+

2λ2
3

3

C32(5, 5 : 6) =
9λ1λ

2
3
−6λ3

3

6
+ λ2

3

6λ2λ
2
3
−2λ3

3

6
+

λ2
3

3

C32(6, 6 : 7) =
6λ1λ

2
3
−2λ3

3

2
+ λ2

3

3λ2λ
2
3

2

C32(7, 7 : 8) = 3λ1λ
2
3

3λ2λ
2
3

C33 = λ3
3I ∈ R7×7

1.4.3 Conclusion

For any r ≥ 1, we have built a B-spline like basis made out of simplex splines for the space Sr
3r
( ) of splines

on the Clough-Tocher split on a single triangle. For even values of r , we removed one of the elements in order

to obtain the partition of unity and a Marsden-like identity proved for r ≤ 3 and shown symbolically for r ≤ 6.

Looking in more detail at the cases r = 2,3, corresponding to degrees d = 6,9, we gave explicit formulas for

connecting two neighbooring triangles in a Cr fashion across an edge using Bernstein-Bézier techniques, and gave

an upper bound for the L∞ condition number of the basis.

For r = 4,5,6 the domain points can be computed as for r ≤ 3 using the Marsden like-identity shown below,

which gives interpolation points to study the stability . The coefficients to obtain the Cr–connection between two

triangles T := 〈p1, p2, p3〉 and T̃ := 〈p1, p2, p̃3〉 can be found by a computation in the Bernstein basis of the

polynomials in 〈p1, p2, pT 〉 and 〈p1, p2, p̃T 〉.

We end by restating the Marsden-like identity in a general form. It is proved for r = 1,2,3 and symbolically for

r = 4,5,6. It is a conjecture for r > 6.

Theorem 4 (The barycentric Marsden-like identity for degree 3r , r ≤ 6.)

For r ∈ N, d = 3r , ui, βi ∈ R, with βi ≥ 0, i = 1,2,3, and β1 + β2 + β3 = 1 we have

(u1β1 + u2β2 + u3β3)
d
=

∑
(i, j ,k ,ℓ)∈Īr

ρi jkℓ(u1,u2,u3)S
d
ijkℓ(β1, β2, β3),

where the index set Īr is given in Definition 3 and

S3r
i jkℓ := ci jkℓ i jkℓ, where ci jkℓ :=




1, if ℓ = 0,

2/3 if max(ǫ1, ǫ2, ǫ3) = 1/2,

1/3 otherwise,

ρi jkℓ(u1,u2,u3) := ui−1
1 u j−1

2
uk−1

3 ūλ−1
123 (ǫ1u1 + ǫ2u2 + ǫ3u3 + δ0ℓ)

1−δ0ℓ .

(1.73)

Here, λ := max(ℓ,1), ū123 := (u1 + u2 + u3)/3, ν := max(i, j, k), and
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ǫ1 :=

{
1/γ1, i < ν & j , 1 & k , 1,

0, otherwise
, γ1 :=

{
2, i , 1 & j , k,

1, otherwise ,

ǫ2 :=

{
1/γ2, j < ν & i , 1 & k , 1,

0, otherwise
, γ2 :=

{
2, j , 1 & i , k,

1, otherwise ,

ǫ3 :=

{
1/γ3, k < ν & i , 1 & j , 1,

0, otherwise
, γ3 :=

{
2, k , 1 & i , j,

1, otherwise .

(1.74)

Proof For r = 1,2,3 this is an alternative way of formulating Theorem 5 in [19] for r = 1, and Theorems 2,3. To

see this consider first r = 1. In [19] it was shown that

(βT u)3 = u3
1S1(β) + u2

1u2S2(β) + u1u2
2S3(β) + u3

2S4(β) + u2
2u3S5(β)

+ u2u2
3S6(β) + u3

3S7(β) + u1u2
3S8(β) + u2

1u3S9(β)

+ u1u2u3

(
S10(β) + S11(β) + S12(β)

)
,

(1.75)

where β := (β1, β2, β3) and u := (u1,u2,u3). For the first 9 (Bernstein) dual functions we find ǫ1 = ǫ2 =

ǫ3 = 0, δ0ℓ = 1, and (1.73) holds. For the dual function ρ[1221] corresponding to S10 = 1221/3 we find

(ǫ1u1 + ǫ2u2 + ǫ3u3 + δ0ℓ)
1−δ0ℓ = u1 and (1.73) gives ρ1221(u)S3

1221
(β) = u1u2u3S10(β) as stated in (1.75). The

results for ρ[2121] and ρ[2211] are similar. For r = 2,3 it follows as for r = 1 that (1.73) holds for the Bernstein

polynomials in I2
Bernstein

. For r = 2 consider for example ρ2322(u) = u1u2
2
u3ū1,3ū123 and S2322 = 2 2332/3 in

Theorem 2. This is the same as the expressions in (1.73) since ǫ1 = ǫ3 = 1/2 and ǫ3 = 0. As an example for

r = 3, ρ3324(u) = u2
1
u2

2
u2

3
ū3

123
and S3324 = 3324/3 in Theorem 3 is the same as the expressions in (1.73) since

ǫ1 = ǫ2 = 0 and ǫ3 = 1. All other cases are verified similarly.

�
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1.5 Appendix

We provide the reader with free extra entertainment by giving alternative proofs, not facts, for some properties of

our spline basis.

1.5.1 Generating system for the spline space

To show that Σr
3r

generates the space of all simplex splines in, Sr
3r
( ), we begin with a definition and a lemma.

Definition 5 We introduce, for m ≥ 0 and µ ≤ d + 1 the spaces

Mm = span
{

[i, j, k; ℓ] ∈ Srd( ) : ℓ ≥ m, max{i, j, k} = µ − ℓ
}
,

Wm = span
{

[i, j, k; ℓ] ∈ Srd( ) : ℓ ≥ m, min{i, j, k} = 1
}
.

Note that by definition Mm ⊇ Mm+1 and Wm ⊇ Wm+1 for any m ∈ N0.

Lemma 5 Let ℓ ∈ N0 and i, j, k ∈ N with i + j + k + ℓ = d + 3. If max{i, j, k} < µ − ℓ and min{i, j, k} > 1 then

[i, j, k; ℓ] ∈ Mℓ+1 +Wℓ+1.

Proof We prove the lemma by induction on the defect ν = µ − ℓ − max{i, j, k} which starts at ν = 1 since

max{i, j, k} < µ − ℓ.



26 Tom Lyche, Jean-Louis Merrien, and Tomas Sauer

If ν = 1, suppose without loss of generality that max{i, j, k} = i, otherwise one can permute the knots

appropriately. The knot insertion formula (1.18) yields that

[i, j, k; ℓ] =
1

3

(
[i − 1, j, k; ℓ + 1] + [i, j − 1, k; ℓ + 1] + [i, j, k − 1; ℓ + 1]

)
, (1.76)

and the two functions [i, j − 1, k; ℓ + 1] and [i, j, k − 1; ℓ + 1] satisfy

max

{
{i, j − 1, k}
{i, j, k − 1}

}
= i = µ − ℓ − ν = µ − (ℓ + 1),

hence belong to Σr
3r

, thus to Mℓ+1. The same holds true for [i − 1, j, k; ℓ + 1] if j = i or k = i. In the remaining

case, i > max{ j, k}, we decompose

[i − 1, j, k; ℓ + 1] =
1

3

(
[i − 2, j, k; ℓ + 2] + [i − 1, j − 1, k; ℓ + 2] + [i − 1, j, k − 1; ℓ + 2]

)
and note that the last two functions on the right hand side again belong to Σr

3r
, thus to Mℓ+2 ⊂ Mℓ+1, so that again

one only has to look at the first term. This procedure is repeated n := i − max{ j, k} times when i − n = max{ j, k}
and thus [i − n, j, k; ℓ + n] ∈ Mℓ+n ⊂ Mℓ+1.

To advance the induction, suppose that the result has been verified for some defect ν ≥ 1 and again apply the

decomposition (1.76) to a spline in Σr
3r

of defect ν+1. Suppose again without loss of generality that i = max{i, j, k}.
We begin by looking at the first element of the decomposition where three things can happen:

1. i = 2, then immediately [i − 1, j, k; ℓ + 1] ∈ Wℓ+1,

2. the defect is ν if i = j or i = k, and the hypothesis yields that [i − 1, j, k; ℓ + 1] ∈ Mℓ+1 +Wℓ+1,

3. still we have ν+1 which happens if i > max{ j, k}. In this case, we repeat the above argument of n := i−max{ j, k}
iterated decompositions until, eventually, [i − n, j, k; ℓ + n] ∈ Mℓ+n +Wℓ+n ⊂ Mℓ+1 +Wℓ+1. �

For the two other elements of the decomposition, the defect of [i, j − 1, k; ℓ + 1] and [i, j, k − 1; ℓ + 1] is

µ − (ℓ + 1) − max{i, j − 1, j, k − 1, k} = µ − (ℓ + 1) − i = (µ − ℓ − max{i, j, k}) − 1 = ν + 1 − 1 = ν

and the induction hypothesis yields that

[i, j − 1, k; ℓ + 1]

[i, j, k − 1; ℓ + 1]

}
∈ Mℓ+2 +Wℓ+2 ⊂ Mℓ+1 +Wℓ+1.

This advances the induction hypothesis and completes the proof of the lemma.

�

Proposition 8 Σr
3r

generates the space of all simplex splines in Sr
3r

.

Proof First recall that, by assumption, µ = 3r + 1 − r = 2r + 1 and let [i, j, k; ℓ] be one of the simplex spline

generating Sr
3r
( ), which implies that

1. min{i, j, k, ℓ} ≥ 0 and i + j + k + ℓ = 3r + 3,

2. ℓ > 0 implies max{i, j, k} ≤ µ − ℓ = 2r + 1 − ℓ for Cr–smoothness,

3. if min{i, j, k} = 0, then ℓ > 0 since the Bernstein polynomials with zero multiplicity correspond to distributions

defined only on the boundary of the simplex.

We distinguish three cases:

1. max{i, j, k} > µ − ℓ, then ℓ = 0 and [i, j, k; ℓ] is already an element of Type (2),

2. max{i, j, k} = µ − ℓ then

a. if i := min{i, j, k} = 0 and j := max{i, j, k} = µ − ℓ = 2r + 1 − ℓ. Since i + j + k + ℓ = 3r + 3, we deduce

that k = 2 + r ≥ 2. By knot insertion,

[0, j, k; ℓ] =
1

3

(
[1, j − 1, k; ℓ] + [1, j, k − 1; ℓ] + [1, j, k; ℓ − 1]

)
.

The first element in this expression, [1, j−1, k; ℓ] is of Type (3) if k < j and of Type (1) if k = j, the second

one, [1, j, k − 1; ℓ] is always of Type (1) and the third one, [1, j, k; ℓ − 1], of Type (3). Consequently,

[0, j, k; ℓ] ∈ span(Σr
3r
).
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b. if min{i, j, k} ≥ 1, then [i, j, k; ℓ] is already an element of Type (1), hence in Σr
3r

.

3. max{i, j, k} < µ − ℓ

a. if i := min{i, j, k} = 0, assume that j := max{i, j, k}. Since i + j + k + ℓ = 3r + 3, we deduce that

j ≥ k > 2 + r ≥ 2 and knot insertion yields

[0, j, k; ℓ] =
1

3

(
[1, j − 1, k; ℓ] + [1, j, k − 1; ℓ] + [1, j, k; ℓ − 1]

)

where the three elements on the right hand side are all of Type (3), hence [0, j, k; ℓ] ∈ span(Σr
3r
).

b. if min{i, j, k} = 1, then [i, j, k; ℓ] is immediately an element of Type (3).

c. if min{i, j, k} > 1 we refer to Lemma 5 and find that [i, j, k; ℓ] ∈ Mℓ+1 +Wℓ+1 ⊂ M0 +W0.

To finish the proof and to complete the last of these cases, we have to show that M0 +W0 ⊆ span(Σr
3r
). In fact,

M0 ⊂ span(Σr
3r
) was exactly proved in case 2. To complete the proof, let [i, j, k; ℓ] be a generator of W0. If

max{i, j, k} > µ− ℓ then once more ℓ = 0 and [i, j, k; ℓ] = [i, j, k; 0] is an element of Type (2). If, on the other

hand, max{i, j, k} = µ− ℓ, then [i, j, k; ℓ] is an element of Type (1), and if max{i, j, k} < µ− ℓ, then [i, j, k; ℓ]

is an element of Type (3). Consequently, [i, j, k; ℓ] ∈ Σr
3r

and thus W0 ⊂ span(Σr
3r
) which completes the proof

that

M0 +W0 ⊆ span(Σr3r ) (1.77)

and the proof of the theorem.

�

1.5.2 A special case of linear independence

Here we give a direct proof of the fact stated in Proposition 4 that the functions in Σ̄2
6

are linearly independent on

.

Proof Suppose for some real numbers {cj} that
∑36

j=1 cjS6
j
(x) = 0 for all x ∈ . We first show that cj = 0 for

j = 1, . . . ,18. These corresponds to Bernstein polynomials with domainpoints on the boundary of . Consider the

edge 〈p1, p2〉 corresponding to β3 = 0. Looking at Figures 1.3, 1.4 we see that i+ j ≤ 7 for S6
8
, . . . ,S6

36
. By the local

smoothness property only S6
1
, . . . ,S6

7
can be nonzero on this edge. Moreover, on the same edge, these functions

reduce to linearly independent univariate Bernstein polynomials B6
i j

for i + j = 6. It follows that c1 = · · · = c7 = 0.

With similar arguments on the edges 〈p2, p3〉 and 〈p3, p1〉 we conclude that cj = 0 for j ≤ 18.

The remaining simplex splines S6
j

j = 19, . . . ,36 are located on 3 rings. On ring k we find S6
j

for j = 19, . . . ,27

for k = 1, j = 28, . . . ,33 for k = 2, and j = 34,35,36 for k = 3, see Figure 1.4. On the horizontal part of these

rings we take partial derivatives of order k with respect to β3 and evaluate at β3 = 0. On the parts parallel to

〈p2, p3〉 we take partial derivatives of order k with respect to β1 and evaluate at β1 = 0. Similarly we use β2 on

the last parts. The details are as follows

The horizontal part of the first inner ring contains the functions S6
19
,S6

22
,S6

23
,S6

20
corresponding to S6

i jkℓ
with

i + j = 7. By (1.47) S6
j
|T3
= O(β2

3
) for j = 19, . . . ,36, j , 19,20,22,23 and

S6
19 |T3

= 30β4
1β2β3, S6

22 |T3
= 60β3

1β
2
2β3 +O(β2

3) S6
23 |T3

= 60β2
1β

3
2β3 +O(β2

3), S6
20 |T3

= 30β1β
4
2β3.

With x = (β1, β2,0) we then find

0 =
∂

∂β3

©«
36∑
j=19

cjS
6
j

ª®¬
(x) =

∂

∂β3

(
c19S6

19 + c23S6
22 + c23S6

23 + c20S6
20

)
(x)

= 30c19β
4
1β2 + 60c22β

3
1β

2
2 + 60c23β

2
1β

3
2 + 30c20β1β

4
2,

a linear combination of linearly independent univariate Bernstein polynomials of degree 5. It follows that c19 =

c22 = c23 = c20 = 0. With a similar argument with S6
24
,S6

25
,S6

21
on T1 and S6

26
,S6

27
on T2 we conclude that cj = 0 for

j ≤ 27.
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Moving to the next ring we consider S6
28
,S6

29
,S6

30
on the horizontal part and obtain from (1.46) and (1.47) with

x = (β1, β2,0)

0 =
∂2

∂β2
3

©«
36∑
j=28

cjS
6
j

ª®¬
(x) =

∂2

∂β2
3

(
c28S6

28 + c29S6
29 + c30S6

30

)
(x)

= 120 ∗ 4c28β
3
1β2 + 270 ∗ 4c29β

2
1β

2
2 + 120 ∗ 4c30β1β

3
2,

a linear combination of linearly independent univariate Bernstein polynomials of degree 4. It follows that c28 =

c29 = c30 = 0. Moving around this ring we conclude that cj = 0, j ≤ 33. Finally, by taking third derivatives with

respect to β3 we obtain by (1.46)

0 =
∂3

∂β3
3

©«
36∑
j=34

cjS
6
j

ª®¬
(x) =

∂3

∂β3
3

(
c34S6

34 + c35S6
35

)
(x) = 360 ∗ 6

(
β2

1β2c34 + β1β
2
2c35

)
.

This implies that c34 = c35 = 0 and then c36 = 0 since by (1.46) S6
36
|T3

is nonzero.

�
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