Chapter 1

Simplex—Splines on the Clough-Tocher Split with Arbitrary
Smoothness.

Tom Lyche, Jean-Louis Merrien, and Tomas Sauer

Abstract The space of piecewise polynomials of smoothness r and degree 3r is considered on the Clough-Tocher
split of a triangle. For any r > 1 we give a basis of simplex splines for this space, then a Marsden-like identity,
which is proved explicitly for r < 3 and symbolically for 4 < r < 6. In addition, generalizing results for r = 1, we
prove for r = 2,3 a geometry independent bound for the condition number in the infinity norm of this basis, and
conditions to connect two triangles with smoothness .
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1.1 Introduction

Splines over triangulations have applications in several branches of the sciences ranging from finite element
analysis, surfaces in computer aided design and other engineering problems, see for example [6,9, 17]. For many
of these applications, piecewise linear C° surfaces do not suffice. In some cases, we need smoother elements for
modeling, or higher polynomial degrees to increase the approximation order.
In this paper, we are interested in the space of polynomial splines over a triangulation A of a polygonal domain
Q of R?,
SH(A) :={f e C"(Q): fly € Py, forall T € A},

where d > r > O are given integers, and P is the space of bivariate polynomials of total degree < d. The dimension
of this finite dimensional vector space is difficult to determine in general [17], but with the restriction d > 3r + 2
its dimension can be expressed solely in terms of d and r, see [14].

We can use lower degrees if we are willing to split each triangle into a number of subtriangles. The most well
known examples are the Clough-Tocher split [5], and the Powell-Sabin 6 and 12 splits [23]. For these splits each
triangle is divided into 3,6 and 12 subtriangles, respectively. For material on these splits and B-spline like bases
for splines on triangulations see [2,3,7,8, 10, 12, 13, 15-20, 25-37].

Here we consider the Clough-Tocher triangulation Acr, see [4,5], where each triangle in the original triangu-
lation A is split into 3 subtriangles by connecting the vertices of each triangle to its barycenter , see Figure 1.1. In
[18], Hermite interpolation problems were considered for super-spline subspaces of S (Acr) and S, (Acr) for
r even and odd, respectively. It was also stated that these degrees are minimal for global C”. See also [25]. In [15]

stable local bases were constructed for even smaller super-spline subspaces of S, (Acr) and S (Acr).

In this paper, we consider for any r € N, the spaces Sgr(A) on a single triangle 7 = A in Acr for which
we construct a B-spline like basis made out of simplex splines. They constitute a basis for the space since we
show that their number agrees with the dimension of the space and that they are linearly independent. For the
latter the differentiation formula for simplex splines is used. This extends and generalizes the case r = 1 that was
considered in [19]. For more on the Clough-Tocher split see [1,4,11,13,15,17,18,21,28,32]. Looking in more
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detail at the cases r = 2,3, corresponding to degrees d = 6,9, we moreover give explicit formulas for connecting
two neighboring triangles in a C” fashion across an edge using Bernstein-Bézier techniques, and give an upper
bound for the L., condition number of the basis. This upper bound is independent of the shape of the triangle 7.
We also give a Marsden-like identity for the reproduction of polynomials which is proved for r < 3 and shown
symbolically for r < 6. We conjecture that it holds for any r.

It was shown in [15, 18] that global C? continuity cannot be achieved for d = 6 for a general triangulation refined
by Clough-Tocher splits into Acr. However, for r odd it follows, again from [15, 18], that global C" continuity
holds for d = 3r. This means in particular that the formulas for C* continuity across an edge in Section 1.4.2 can
be used to compute with elements in Sg (Act), using the simplex spline basis on each triangle in SS(A) in the usual
Bernstein-Bézier fashion.

Some results in this paper are based on symbolic computation. The first author can provide code in Mathematica
for specific results upon request.

The paper is organized as follows. Since it depends heavily on properties of Bernstein polynomials and simplex
splines, we recall some well known facts about these functions in the next section. In Section 1.3 we define a
collection of simplex splines and show that they constitute a basis for S%, (A),r > 1.1In Section 1.4, we consider the
cases of global CZ and C? regularity in more detail. In Subsection 1.5.3, we give a generalization of the barycentric
Marsden-like identity for 3 < r. We add an appendix with some proofs not essential for the results in the paper,
but that can be of some use for a reader.

1.2 Preliminaries

In this section we recall some properties of Bernstein polynomials on a triangle and bivariate simplex splines. Here
we use the notation d € Ny := N U {0}, and let {(S) denote the convex hull of the set S c R.

1.2.1 Bernstein Polynomials

For a given nondegenerate triangle 7 := ({p,p,,p3}) € R, and i, |,k € Ny, the Bernstein polynomial Bl.djk :
R? — R of degree d := i + j + k € Ny, is defined by

a .
By, (X.y) = B{f, (B1. B2, B3) 1= Wﬁ;ﬂ%, (1.1)

where 8 = (81, 82, 33) are the barycentric coordinates of x = (X, y) € R? with respect to 7, i.e.,

X =p61p+Papr+Bips, BitBrt+fBi=1. (1.2)

The barycentric form of Marsden’s identity for Bernstein polynomials is simply the multinomial expansion
U+ W +Ufa) = T UUWUBE (B, f), (Ul ) €RY, B+ fo+fs=1,  (1.3)
i+j+k=d

where in the expression ;. ;.= it is understood that i, j,k € Ny, which is consistent with the convention that
Bl.d].k = 0 if one of the indices becomes negative.

Taking partial derivatives of order v, 4,k € Ny with respect to Uy, Uy, Us, respectively, in (1.3) and setting
u = (1,1,1) we obtain

BIBBS = >, vinBIBBDBGBLuB), v+ A+k<d yiu(BIBIBS) € R, (1.4)

i+j+k=d
We find
1= > BL(BLB1B)
i+j+k=d
(ﬁlaﬁZ,ﬂ3) = Z bijk Bijk(ﬁlaﬁLﬁS)a bijk = (a» a, a) .

i+j+k=d
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The vector b* ik is called the barycentric form of the domain point of Bd From (1.4) and (1.5) it follows that
the elements in the set

d.= (B :i,j,k>0,i+]+k=d} (1.6)

ijk *

form a partition of unity basis for P;. Indeed, the number of elements #84 of B4 equals (dz 2) , the dimension of
P4. We refer to [17] for further properties of Blfij "

1.2.2 Bivariate Simplex Splines

For our purpose it is convenient to work with area normalized bivariate simplex splines [20] of degree d > 0
with knots
K:={ki,....kas3}, k; €eR? j=1,...,d+3.

We can consider K either as a multiset or as a matrix K € R2x(d+3),
The simplex spline Q[K] : R?> — R, is now defined as Q[K](x) = 0 for all x € R? if area((K)) = 0, and

otherwise
area (T)
(d+2)

2

Q[K] := —=—M[K], (1.7)

where 7 is a fixed reference triangle in the original triangulation A. Here area(S) is the area in R? of a set
S € R2. The function M[K] is a unit integral bivariate normalized simplex spline, defined as a linear functional
M[K] : C(R?) — R given by

d+3

MIK](@) = @+ 2! | Z kjy)dt - dtg, ¢ € CR2), (1.8)
d+2
with S, := {(t},...,t,1) € R o t; > 0, Z"“t = 1}, the unit simplex in R", n € N. If area(K) = 0 then M[K]
can be identified with a function M[K] : R?> — R, and we write (1.8) in the form
d+3
/ MIK](x)p(x)dx = (d + 2)!/S ga(z kjtj)dtl dtgs,, ¢ € C(R?). (1.9)
RS d+2 _

We mention the following well-known properties of M[K] [22,24] and Q[K].

1. Q[K] and M[K] are piecewise polynomials of degree d = #K — 3 witht support (K).

2. Local smoothness: Across a knot line, which is a line in the complete graph associated with K, we have that
M[K],Q[K] € C¥*1=™ where mis the number of knots on that knot line, including multiplicities.

3. Differentiation formula: For # = (u;,U;) € R? and any choice of ay,...,a4,3 such that ), jajk; = u,
Zj a; = 0, one has

d+3 d+3
D M[K] = (d+2) > a;M[K\ k], D,QKI=d ) a;QK\k/], (1.10)
j=1 J=1

where D, := u;D; + ;D and Dy, D, denotes partial derivatives. (A-recurrence)

4. Recurrence relation: For any x € R” and any by, . .., bg,3 such that 2 bjk; =x,%;b; =1, one has
d+ d+3 d+3
MIK]@) = —~ Zb MIK \ k;](x),  QIK](x) = ZbQ{K\k J(x). (L11)
(B-recurrence)
5. Knot insertion formula: For any y € R? and any Cj, . . .,Cg43 such that 2,;Cik; =y, ;i =1, one has
d+3 d+3
MIK] = > MIKUy k] QIKI= > ¢QIKUy\Kjl. (1.12)
j=1 j=1

(C-recurrence)
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Fig. 1.1 The Clough-Tocher split, 7 = (P, p>.P3), 71 := Pr.P>.P3), T2 := Pr.P3.P;)and T3 := (pr.p.P>)

6. Degree zero: For K = {k,k,,k3}

B 1 _area(7") 0
M[K](x) := —area((K))’ QIK](x) := area((K))’ x € (K)?, (1.13)

M[K](x) := Q[K](x) = 0, x ¢ (K),

where 8¢ is the interior of the set S. The values of M[K] and Q[K] on the boundary of (K) has to be dealt
with separately, see below.

We refer to [22,24] for further properties of M[K].

1.3 The Clough-Tocher split and a basis for S,

Given a nondegenerate triangle 7~ in R?, we connect the vertices p |, p,, p to the barycenter py := (p; +p,+p3)/3.
With this construction, known as the Clough-Tocher split A, we obtain three subtriangles 71 := (pr, P2 P3)>
T :=(pr.P3.p1) and T3 := (pr, P}, P), see Figure 1.1.

We consider the spline space SZ(A) with respect to these three subtriangles on 7. To obtain a unique function
value at each point in 7~ we associate the half open edges

(pipr) ={0-Op;+tpr:0<t <1}, =123

to the three subtriangles of 7 as follows

(P1-P1) €T (P2PT) €T3, (P3,PT) ETHS (1.14)

and we somewhat arbitrarily associate the point py to 7.
The dimension of the space SZ(A) is given in the following proposition. It follows from Theorem 9.3 in [17]
withn=m, = 3.

Proposition 1 We have

r+2 d-r+1) <&
dimS7(A) = +3 + Y r+1-2j), =m 1.15
1md<>(2)(2);( D (1.15)

We focus on a special collection of simplex splines on the Clough—Tocher split of a single triangle in the
following way: for integers i, j, K, £, we consider the simplex spline Q [pfi}, péj } , pék}, pg ) , where pj{.m}
that the vertex p; has multiplicity m, i. ., is repeated mtimes. For brevity, we will also use two alternative notations,

a more compact, and a more illustrative one, namely,

, means

()
9 pfi}’péj},pék}’p({]f}] = A} k: €] = Agjee = 00 i,j,k ¢ eNo. (1.16)
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We note that A;jx, is a simplex spline of degree d =i + j + Kk + ¢ — 3, and by the local smoothness property
has smoothness d + 1 — i — € across the knotline (p, py) for € > 0. In this notation, the Bernstein polynomials
Bijk(Uv,w) := (H”k) u' v/ wk of degree d = i + j + k have the form

()
Bijk = Ais1js1 k41,0 = @@ i+j+k=d. (1.17)

We will use the more graphic form on the right hand side of (1.16) whenever possible to make the basic ideas
more accessible, but it is convenient to use the more compact A notations in computations. For i, j,k € N, the
knot insertion formula (1.12) for the insertion of a knot at the barycenter can be written

O el

Definition 1 The number u := d + 1 —r is called the maximum multiplicity of an interior knot line of the simplex
spline A, ke

Some obvious properties for simplex splines to be in SZI(A) are listed in the following lemma.

Lemma 1 If A ;o € ST(A) then

Li+j+k+¢=d+3=p+r+2,
2. if, in addition, € # 0 then regularity C" implies max{i, j,K} +{ < pu. =

Next, let us turn to splines of degree 3r, and focus on specific elements of S (A) that will turn out to be useful.
The three types are categorized by whether max{i, j, k} + € equals y, exceeds it or is strictly less than u, where the
second case occurs only for £ = 0.

Definition 2 Let X} denote the set of elements A, ke of Sgr(A) that consists of the elements of the following
three types:

Type (1):  max{i, j,K} + ¢ = g and min{i, j, Kk} > 1,
Type (2): € = 0and max{i, j,k} > u,
Type (3):  max{i, j,K} + ¢ < g and min{i, j,k} = 1.

Remark 1 The types are symmetric with respect to i, j, k, i. e., all subclasses are closed under permutation of the
indices.

Forr = 1,2,3,4, Definition 2 results in the following set of splines.
Example 1 Forr = 1,d =3, u = 3, dim S}(A) = 12 we have
1. Type (1):9 elements

and symmetries

2. Type (2) 3 elements

and symmetries,
(O—O

3. Type (3): 0 elements.
Example 2 Forr =2,d =6, u =5, dim Sg(A) = 37 the different types look as follows:
1. Type (1): 25 elements

and symmetries,



6 Tom Lyche, Jean-Louis Merrien, and Tomas Sauer

2. Type (2) 9 elements

Lo g
- A—

3. Type (3): 3 elements

(D)
and symmetries.
O—®

Example 3 Inthe caser =3,d =9, u =7, dim SS(A) =75 we get
1. Type (1): 48 elements

o 0% 6% 6% %o %-

symmetries,
2. Type (2): 18 elements

0.6 6 &g

3. Type (3): 9 elements

o 6%
O O o

Example 4 Forr =4,d =12, u =9, dim S‘b(&) = 127, the elements look as follows:
1. Type (1): 79 elements

06934 e e % 60 %
08% 6% 6% 6% &0 6%

2. Type (2): 30 elements

(o6 6%0% eCodlo

3. Type (3): 18 elements

9060 e

Remark 2 Some Bernstein polynomials are not of any of the three types and thus are not in the basis. A Bernstein
polynomial in the basis can be of Type (1), (2) or (3), see Figure 1.2 and the previous examples.

One central result of this paper, stated in Theorem 1, is that X7 is in fact a basis for Sgr(&). The proof of
this fact will consist of showing that X7 is a subset of dim(S, (A)) linearly indenpendent elements of the space
S5 (A).

To count the number of elements of X% , we start with some bounds of ¢ with respect to the different types of
functions in X% .
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Fig. 1.2 Domain points of the Bernstein polynomials used in the CTS basis, left: r = 1,d = 3, middle: r = 2,d = 6, right:
r =3,d =9. “Removed” means that the respective Bernstein polynomials are of none of the Types (1), (2) or (3).

Lemma 2 For Type (1) we have € < d — 3r /2 while for Type (3) £ < d — 2r — 2 holds.

Proof For a Type (1) element, assume thati + ¢ = u, then j + £ < yand K+ ¢ < p, hencei + j + K+ 3¢ < 3pu.

Sincei+j+k+f=d+3and u=d-r + 1, we thus deduce thatd +3+2£ <3d+3-3rorf <d-3r/2.
For Type (3), we assume that K = 1, hence i+ £ < u—land j+€ < u—1,theni+j+k+2f <2u—-1.Since

i+j+k+f=d+3andu=d-r+1,itfollowsthatd+3+¢ <2d-2r+2—-1lorf<d-2r -2

]

Next we prove that the sum of the numbers of elements of the three types is exactly the dimension of dim S, A).

Proposition 2 Forr > 1 and d = 3r, we have the following table according to the parity of r.

r 25,s>0 2s+1,8s>0
d 6s 6s+3
dim S7(A)[ 2757 + 95+ 1[3(95” + 125+ 4)

#Type(1)|3s(5s+ 3) + 1| 3(s+ 1)(55+ 3) (1.19)
#T ype(2) 3s(2s+1)| 3(s+ 1)(2s+ 1)
#Type(3) 3s(2s-1) 3s(2s+ 1)
Hence,
#Type(l) + #Type(2) + #T ype(3) = dim Sgr(A), r>1. (1.20)

Proof We begin with r of even parity, i.e.,r =25, d=3r =6S, u=4s+1,i + j + K+ £ = 65+ 3 and count the
basis elements of different types.

1. Type (1): According to Lemma 2 we have £ < d — 3r /2 = 3s and a generic element of Type (1) is of the form
Ali=s+p+1,j,k=2s+2—-j;3s-p], 1<j<il<kc<i, (1.21)

from which it follows that S—p+ 1 < j < 2s+ 1 and p = 0,...,3S. We count the number of elements with
respect to p:

a. For p=0: 1 element.

The only possible choice is A[S +1,s+ 1,5+ 1;39].
b. For 1 < p < s: 6p elements.

The elements A[i, j, k; 3s — p] are of the form

Als+p+1,s—p+1+gs+p+1-0g;3s—p], q=0,...,2p-1, (1.22)

ie,i=s+p+1,j=s—-p+1+40,5+p+ -0, and with the permutations [i, j, K], [j,k,i] and [k, j,i],
which gives 3 elements for any  in (1.22). We notice that in two cases we obtain the same three elements up
to the permutation, namely, for q = O the valuesi = k=s+p+ 1, ] = s— p+ 1, and for q = 2p the values
i=j=s+p+1,k=s-p+1.Inthe other cases,0 < q < 2p,wehave j =s—p+1+g<i=s+p+1
and kK =S+ p+1-0g<i=s+p+1,so that the elements are different.
c. Fors+1 < p < 3s: 65+ 3 elements

consisting of

Als+p+1,9+1,2s—qg+ 1;3s-p], q

0,...,2s (1.23)
and again the permutations [i, j, K], [j, k,i], [K, J,i].
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Hence the total number of elements of Type (1) is

s 3s
1+26p+ Z (65+3) = 1+3s(S+ 1) +25(65+3) = 1 + 35(55+ 3)
p=1 p=s+1

as listed in (1.19).
2. Type (2) requires ¢ = 0 by definition and the generic elements of the form

Ali =4s+2+p,j,k=s+1-j—-p;0], 1<j<ii<kc<i, (1.24)

with the additional constrainti > u+ 1 =4s+ 2 thatleadsto1 < j <2s—p,p=0,...,25— 1. This gives
3(2s - p) elements
A[4s+2+p,q+1,23—p—q;0], q=0,...,2s-p—-1, (1.25)

and the respective permutations so that the total number of elements of Type (2) is

2s—1 2s
Z 3(2s—p) = Zq =3s(2s+ 1)
p=1 q=1

in this case.
3. Type (3): up to symmetry we can assume that K = 1 and, by Lemma 2 that £ < d — 2r —2 = 25— 2. The generic
element is of the form

Ali,j=4s+4+p-ik=1;0=25s-2-p], i+0<u—-1=4s j+£<4sp=0,...,25-2, (1.26)
sincei +j +k+¢=d+3=065+3. Hence, for 0 < p < 2s—2 we get 3(p + 1) elements
A[25+2+p—q,25+2+q,1;25—2—p], q=0,...,p (1.27)

and the permutations [i, j, K], [j, K,i], [K, j,i], leading to a total of

252

Z 3(p+1)=3s(2s- 1)

p=0
elements of Type (3).

In the case of odd parity, i.e.,r =2s+1,d=3r =65+ 3, u =4s+3,i + ] + K+ £ = 65+ 6, we proceed in the
same way and distinguish by types.

1. For Type (1) we have the bound £ < 3s+ 1 and the generic element
Ali =s+p+2,j,k=2s+3—-j;3s+1-p], I<j<il<k<i,p=0,...,35+1. (1.28)

Again, Type (1) request the distinction of several cases according to p.
a. For 0 < p < s:6p+ 3 elements
The generic elements are

Als+p+2,s+1-p+gs+2+p-q;3s+1-p], q=0,...,2p, (1.29)

and the permutations [i, j, k], [j, K,i], [K, j,i]. Again, we notice that we obtain the same three elements up to

the permutations for g = 0, namelyi = K = s+p+2, j = S—p+1,and forq = 2p+1, namelyi = j = S+p+2,

k = s—p+ 1, respectively. For 0 < g < 2p, on the other hand, we have j = S+ 1 —-p+q<i =S+ p+2and

kK=s+2+p-—qg<i=s+p+2so that all the elements are different again, just like in the case of even .
b. Fors+ 1 < p <3s+ 1: 6(s+ 1) elements

based on the generic element

Als+p+2,q+1,2s—q+2;3s+ 1 —p], q=0,...,2s+1, (1.30)

and its permutations.

Therefore, the total number of elements of Type (1) is
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K] 3s5+1
Z(6p+ 3)+ Z 6(s+1) = 3(s+ 1)(55+3).
p=0 p=s+1

2. Type (2) again requests £ = 0 and leads to 3(2s + 1 — p) elements based on the generic element
Al4s+4+pg+1,2s+1-p-0q;0], q=0,...,2s-p, (1.31)

and its permutations, so that the total number of elements of Type (2) is

2s
Z 3(2s+1—-p)=3(s+ 1)(2s+ 1).
p=0

3. For Type (3) we again assume that K = 1, note £ < d —2r —2 = 25— 1 and obtain 3(p + 1) elements from the
generic element

A2s+3+p-0,2s+3+0,1;2s-1-p], qg=0,...,p (1.32)
and its permutations totalling up to
2s—-1
Z 3(p+1)=3s2s+ 1)
p=0
elements of Type (3). O

Having completed the table in (1.19) the claim (1.20) follows from summing up the columns of the table.
|
Theorem 1 X is a basis of S7,..

We prove Theorem 1 by verifying in Proposition 3 that the elements of X% are linearly independent. Since we
already know from Proposition 2 that #X} = dim S’ , this indeed shows that they are a basis of the spline space.
Consequently, X7 = spans the space of all simplex splines contained S’ .. We give an independent proof of this fact
in Proposition 8 in the appendix as it may be of independent interest and motivates the classification of the simplex
splines according to the three types.

To prove linear independence, we need the following technical tool concerning particular derivatives of simplex
splines.

Lemma 3 Fori > 0 We have that
Dy, <Al j.k: £](x) = d (A[i 1,k (%) = Al ], k: t’](x)), (1.33)

while
Dp, -+ A0, ], k; £](x) =d(3 A0, ], k; € —1](x)
= A0, = 1k €100 = A0, ]k = 1: €100 = A0, ], k: £109)- o

Proof Write X = 3 @;p;, with ) a; = 1. Then the derivative formula and the recurrence yield that

Dy, A, j.k: £](x) = d ((1 —aDAli - 1,1,k (%) — Al | - Lk; £(x) — asAli, j, k - 1;5](x))
= d A = 1j ke (100 = d (@A = 1Lk €00 + a2l | = 1k €109 + as i . k = 15¢1(x))
= d (A - 11,k 100 = Ali. . k: €10)
which is (1.33). For the second identity we note that p,- = L(p, + p, + p3) implies p; = 3ps— p, — 5 and hence,
writing X = @y ps + aap, + a3p3 with 3 @; = 1, we obtain that
Dp, A0, ], k; £](x)
=d ((3 = @) A0,k €= 1100 = (1 + @) A0, = 1,k; €09 = (1 + a3)A[0, .k = 1; £](0)

which can be recombined as above to yield (1.34).
[
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Since for i, j,k,I € Ny, and x € 7~ with barycentric coordinates S, 82, 83 with respect to p, p,, p3, we have

A0 + 1k 111 = S - g6 - ot w e

A+ 10k 1011w = T s g, xem

Alfi+1,] + 1,0 £+ 1)x) = L+ 0! T'i ‘;"”(ﬁl B (B BY BB x T (1.35)
Ali + 1, + Lk + 1;0](x) = %ﬁlﬂzlg BL,(x). xeT,

we observe that the formula (1.34) in fact corresponds to taking a partial derivative with respect to 8} in (1.35).
Proposition 3 The elements of X, are linearly independent.

Proof Denote by
77 =125 = {G,j.k6) : Ali,j.k; ] € 25 } (1.36)

the set of all knot multiplicities of splines in X% . Now assume that there exist coeflicients a;;x¢ such that

S:= Z aijee Ali, |, k; €] =

(i.j.k,O)el”

On the boundary <p2,p3> we have Ali, j,k;£] # 0 if and only if i = 1 and £ = 0 and the splines A[1, j, k; 0]
reduce to univariate Bernstein polynomials that can with ¢ = 0, be classified as follows:
1. Type (1): A[1L,u—£,€ +r1 +1;0],
2. Type (2: A[L,p+mr +1-m;0],1<m<r,
3. Type 3): A[lLu—€-me+r +1+m0], 1 <ms< &2l ¢ o
together with their symmetric elements where j and K are interchanged. Recall that if these symmetries coincide
they are considered as only one element in ¥} . These Bernstein polynomials are linearly independent within the
same type by construction and between types since the maximal multiplicity is = g — € in Type (1), > u— ¢
in Type (2) and < p — ¢ in Type (3). Therefore, restricting S to the boundary <p2, p3>, it follows that a;jx, = 0
for (i, j,k,€) = (1,],k,0). Considering the other boundaries of 7~, we can thus conclude that &;jx, = 0 whenever
min{i, j,k} = 1 and £ = 0.

Starting from this observation, we prove by induction on m=1,2,... that

ajke =0, min{i, j,K} +£=m, (1.37)

where the case m = 1 has been treated in the first part of this proof. We will treat the case m = 2 explicitly as the
general procedure will become clear by then. We assume that i is the minimal value, consider the identity

0=Dp-xS(X).  Xx€(pyps)

and find by Lemma 3 that there are only two types of splines which are nonzero on the boundary. The first is
A2,k 0](x) = A[Lj, k; 01(x) = A2, j, k; 01(x)
which coincides with A[1, j, k; 0](x) on {p,, p3 ). The second is
Dp, AL . ki 1](x) = A[0. ] k: 1](x) = A[L j. k: 1](x).

which by (1.35) coincides with A[O, ki 1] = A[l, j,k;0] on <p2, p3>. Again, these splines are linearly indepen-
dent within the types by construction and across the types by the different values of the maximal multiplicity, and
(1.37) for m = 2 follows by considering all three faces of 7~ by a symmetry argument.

The general induction step proceeds in exactly this way by assuming that i = min{i, j,K} andi + £ = m+ 1 and
applying (1.33) i times we find from (1.35) with x = (81,8, 83) and £ = m+ 1 —i

(j+k+0)!

DI _ Al j,k; €](x) = KA[0, j,k; £](x) = TIKI]

P1—x

(B2 = B1Y(Bs — B3P

for some connstant K. Differentiating ¢ times with respect to 8; and setting 81 = 0 we find



1 Simplex—Splines on the Clough—Tocher Split with Arbitrary Smoothness. 11

9° o '
o5 D), Al j.k: €)(x) = KB, B5,

where again K is some nonzero constant. where the admissible values for j,k lead to linearly independent
polynomials on the boundary. This completes the proof of Proposition 3.
|

Example 5 We illustrate the elimination procedure of Proposition 3 for the case r = 3.
The elimination proceudre starts by considering the Bernstein polynomials

on the “lower” edge of the triangle where alle other simplex splines from our list vanish. Note that the three types

are then distinguished by whether the maximum equals y = 7 (the element on the left), exceeds this values (the

three elements in the middle) or is strictly smaller (the element on the right). Therefore, the coefficients of these

splines and all their symmetries have to vanish which deals with the first “ring” of coeflicients on the boundary.
Applying the differential operator D), . once, gives us the Bernstein polynomials

of Type (1) and (2). As the list for r = 4 shows, Type (3) elements are not excluded in principle. In addition, we

get the Spline N

which also reduce to nonvanishing univariate Bernstein polynomials on the boundary. This finishes off all elements
with min{i, j, K} + ¢ = 2 and especially all elements of the Types (2) and (3) for r = 2.
The application of DIZ,I_X gives us

since the two Berstein polynomias which are subtracted vanish on the boundary. The other nonvanishing element

O

Now it should be clear how the process is completed: D;l, . extracts the nonzero polynomials

together with their symmetries and applying D, _ . and D5 . We get
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respectively. Observe that in each step of the process always Bernstein polynomials of the same fixed degree are
considered on the boundary.

1.4 Marsden-like Identity, Domain points, Stability and C"—connection

A Marsden-like identity allows us to derive explicit formulas for the representation of polynomials of degree up
to 3r in the simplex spline basis of Sgr(A). Even if we have identified a basis of Sgr(A), it turns out that for
the partition of unity and the Marsden-like identity alone, i.e., for the generation of polynomials and espcially the
constant function, we do not need all the elements of that basis. Hence, instead of having redundancy or a null
component in the sums, we remove one further element according to the following definition.

Definition 3 Depending on the parity of r, we define the following sets and spaces:
1. Ifr = 2s+ 1 with s > 0, then .
igr = Zgr’ Sgr(A) = Sgr(A)
2. Ifr = 2sthen )
2 =30 \{A(s+ 1,5+ 1,5+ 1;39)}, S5 (A) :=span} .

In analogy with (1.36), the set of indices (i, j, K, €) of the basis igr will be written as 7" . Moreover, for the Bernstein
polynomials in igr (cf. Figure 1.2), we define the index sets

I = (k) i+ ]+ ko= 3 max{i, .k} < 2r — 1, min{i,j.k} > 1), .
Lgnsiein = 10,1, K) ti j,keNo, i+ j+k=3r}\ 17 ..
It immediately follows that
- 3 - - - 3r+2 ,
#IBernstein = Er(r +5), #Iremoved =3r(r-D+1 #IBernstein +# removed — 2 = dimP3,. (1.39)

We now consider the cases I = 2,3 in more detail. We prove, using knot insertion, a Marsden-like identity for
r = 2, and state it in a form valid for any r > 1. It is verified symbolically forr < 6.

1.4.1 The C* elements, 7

According to Definition 3, we use only 36 elements of ié with indices from the set 72, which corresponds to
removing A2223 from Zé. In Definition 4 we list these elements, normalized to ensure partition of unity. The set

ié consists of Bernstein polynomials as depicted in Figure 1.2, and 15 other simplex splines with at least one knot
at the barycenter of the triangle.

Definition 4 (The functions £7)

The functions ié consists of the 21 Bernstein polynomials

Y N _ Rt o 2
Sl6+1,j+l,k+l,0 = Ay ke = B (1,1, K) € Tgerngieins (1.40)

and the additional simplex splines

1 1

S, =Sy, = §A4311’ Sy =S, = §A3411’ Sy =Sy = §A1431’
1 1 1

S5 =Sy = §A1341’ S =Sy = §A3141’ S =Sy = §A4131’

2 2 2

Sy =Sy = §A4221’ S =S 1= §A2421’ S =Sy = §A2241’ (1.41)
1 1 1

Sy =Sy, = §A3312’ ) =Sy = §A1332’ Sy =Sy, = §A3132’
2 2 2

Sy =S, = §A3222’ S5 = Sy = §A2322’ S = Sy = §A2232'
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For the numbering of the functions $,. . "$1 see Figures 1.3 and the new figure 1.4 below. In the following

we give explicit formulas for the simplex splines in (1.41). On 77 we have

22 {4,3,1,1} BS — 637 + 15833}

23 {3,4,1,1} —pBS + 6237 — 15835} + 20838

24 {1,4,3,1 1

25 i1,3,4,11 :Eli

S i g

28 {4.2.2.1) 458~ 12B5% — 124355 + 60Bas B

29 {3,3,1,2} 9B° — 368,18, + 455§ﬂ§ (1.42)

30 {2,4,2,1} 88% — 36,87 — 12338; + 608281 + 60828381 — 408583 — 120838383 + 12033 B3 87

31 {1,3,3,2}

(1)

32 {2,2,4,1} 850 — 12237 = 363337 + 603 8] + 6082358 — 405387 — 120825337 + 12088357

34 {3’2’ 2’2} 36,8? - 72ﬁ2ﬂ5 - 72,83[3? + 180ﬁ2ﬁ3ﬂ?
35{2.3,2,2} —72/32 + 216/32,82 + 108,83/351 — 1808287 — 360B,53} + 360/3%/33,82
36 {2,2,3,2} —723% + 108B:8; + 216438, — 1805381 — 36088387 + 360583 3;

where the first entry denotes the position of the spline with respect to aforementioned ordering, the second the
multiplicity of the knots and the third one the explicit expression on 77, using

S5,(1) = =108 + 368, + 245387 — 456581 — 158381 — 90828381 + 2083 8) + 6082835,

+ 12085838, — 90855387 — 60558387 + 605 8381
S5(1) = —1087 + 245,87 + 3638, — 158581 — 45381 — 90B283] + 208353

(1.43)
+ 120,837 + 60B3 B33 — 6028387 — 9083 B3 B7 + 6038331
S,(1) = 9088 — 2168, 8] — 216838, + 1356381 + 13583 8] + 5405288
— 360,85 8] — 36083837 + 27083 838
Here, @(1) is used to indicate the restriction of Sf to the triangle 77. On 7; we have, in the same fashion,
22 {4,3,1,1} -5 + 6185 — 158355 + 205333
23 {3,4,1,1} ﬁg - 68185 + 15ﬁiﬁ§
24 {1,4,3,1} BS =635 + 15823
25 {1,3,4,1} -5 + 6335 — 158353 + 208333
26 {3,1,4,1} S(2)
27 {4,1,3,1} S,(2)
28 {4,2,2,1} 885 — 3618, — 123385 + 601 35 + 6081833, — 40,8iﬁ§ — 12081385 + 1208, 8333
29 {3,3,1,2} 985 — 36185 + 4583, (1.44)
30 {2,4,2,1} 45 — 128185 — 12838 + 60818383
31 {1,3,3,2} 9B5 — 36385 + 45838,
32 {2,2,4,1} 885 — 12185 — 36385 + 608385 + 60818383 — 408383 — 12081 8333 + 12081 8333
33 {3,1,3,2} $.(2)
34 {3,2,2,2} =728 + 216B1 85 + 1083385 — 18082 B3 — 36018385 + 360828333
35 {2,3,2,2} 3685 — 72 ,853 — 72355 + 18081833
36 {2,2,3,2} =725 + 1085185 + 216385 — 1808383 — 360818335 + 360815333
where 6 5 5 2 4 2 4 4 393
§6(2) = —10ﬁ2 + 2451,82 + 36ﬁ3ﬂ2 - 15,81182 - 45,83182 - 90,81ﬁ3ﬁz + 20/33/32
+ 120818335 + 6087 B3B3 — 60B1 8385 — 90B1 B3B3 + 605; 12
S,(2) = —105 + 368185 + 24383 — 45813 — 158383 — 90B1 B335 + 208; B3 (145)

+ 60B1B2B3 + 120838353 — 90836263 — GBI B353 + 6053 22
S5,(2) = 9085 — 2168185 — 216535 + 1358355 + 1358383 + 540518355
~ 360818383 — 360828353 + 27082 B2 83,
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and finally on 73
22 {4,3,1,1} ,(3)
23 {3,4,1,1} .(3)
24 {1,4,3,1} —B5 + 68285 — 158383 + 2083 55
25 {1,3,4,1} BS — 68285 + 158383
26 {3,1,4,1} BS — 68135 + 158183
27 {4,1,3,1} -5 + 6185 — 158783 + 208,33
28 {4,2,2,1} 885 — 36185 — 12235 + 605285 + 60818283 — 4053 B3 — 12083 B2 B3 + 12033 B2 33
29 {3,3,1,2} S,(3) (1.46)
30 {2,4,2,1} 885 — 125183 — 363235 + 608335 + 60818233 — 40/3%@ - 12081835 + 1208183 B3
31 {1,3,3,2} 985 — 365,83 + 45823,
32 {2,2,4,1} 488 — 128183 — 12233 + 6018233
33 {3,1,3,2} 988 — 36153 + 455233
34 {3,2,2,2} =728 + 2168183 + 108,82ﬁ§ — 180823 — 36081 235 + 36()ﬁ§ﬁ2ﬁ§;
35 {2,3,2,2} ~725 + 10861 8] + 216,33 — 180257 — 36081 5,83 + 36081 8253
36 {2,2,3,2} 3685 — 728183 — 128285 + 18081823
with

S,(3) = S5 = —10B5 + 36183 + 24P — 458 B3 — 158383 — 90818285 + 208, B3 + 60818353
+ 12087 B33 — 90B; B335 — 608, Ba 35 + 60, B3 B3

SK(3) = Sl7; = —1085 + 248183 + 368283 — 158785 — 458383 — 90818253 + 208333
+ 120818383 + 60B; B233 — 60818383 — 9081 B3 35 + 6015583 = 60515583 + O(B3)

S(3) = Sl = 9085 — 2168183 — 2168285 + 135513 + 1355383 + 54081 5233
— 360318583 — 3608; B33 + 27081 B3 33

The restrictions of the simplex splines can even be written in terms of Bernstein polynomials on the three
subtriangles. Here are two examples.

(1.47)

S,(3) = Siy,4 17 = {Bazo — Bsio + Beoo, —Boeo + Biso — Baao + B33,
— 10Bqgos + 4Bo15 — Boaa + 6B1os — 3By14 + Biaz — 3By04 + 2B213 — Bogo + B3pz — B3jo + Baay }

S5(3) = S, 17 = {=Bgoo + Bsio = Bazo + Bszo, Boag — Biso + Bogo,
— 10Bgos + 4Bios — Boos + 6Bo1s — 3Bi14 + Br1z — 3Boosa + 2B123 — Bpoo + Bosz — Bz + Boai }

Since max{i, j, K} + £ < 5 for all elements Sfl.k ¢ € ié with £ > 0, it follows from the local smoothness property of

simplex splines that £2 € S2(A). Moreover, the number of elements in £7 is equal to the dimension 36 of S2(A).

Therefore, the following proposition implies that ié is a basis for Sé(&).
The following result is, of course, a special case of Proposition 3, but we provide a direct proof based on the
explicit expressions in the appendix

Proposition 4 The functions in ig are linearly independent on /.
Now we are in position to formulate and prove the announced Marsden identity.

Theorem 2 (Barycentric Marsden-like identity for d = 6)
Foru = [u;, Uy, 3]T € R3, 8 := [B1, 82,8317 €R3, withB; > 0,i =1,2,3 and B + B + B3 = 1 we have

@B =" > Pk B,

(i,j.kt)el?
where, with Uy, 5, 1= (U, + Uy)/2 formn = 1,2,3, and Q123 := (U; + Uy + U3)/3,
Pir1 j+1k+1,0(1) = u’iu;u’g, (,§,K) € I3 croims (1.48)

and
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pa(u) = UiU§U3, parz1(u) = u uzu% pa1(w) =u ugug,
p3141(u) = UTW U3, p1azi(u) = U LBUS p1341(1) = Ujusu
pa1(1) = U3l 3, paa21(u) = Uy U3 U3U1,3, p241() = U Us 0y o (1.49)

pi(u) = UWBW0ns,  pan(u) = Ufuzugﬂlzs, p1332(u) = Ulugugl]m,
p3222(1) = UflpUsUip 30123, p23o2(m) = UpUsUs 30123, p2232(m) = UplpU3l o003,

Proof The barycentric Marsden-like identity follows from the barycentric form (1.3) of the Marsden identity for
Bernstein polynomials by expressing the removed Bernstein polynomials in terms of the elements in ié. Here are

some details. For (i, j,K) € T remove 4 Where
T2 hoved = {(1,2,3).(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3.2,1).(2.2,2)},

we insert knots at the barycenter using (1.18), (1.41), and find

B?z 3= Aozgo = (Agzgr + Doy + Aoz /3

(A134l + A2241)/3 + (Amz + A2232 + A2322)/9,
B¢ 32 = = (Aust + Lost) /3 + (Azsz + Aozy + Dosna) /9,
2 13 = = (Aooar + As1a1) /3 + (Asizz + Aoozy + Dsnna) /9,
2 3= = (Aosar + Aisunt) /3 + (Asziz + Aosan + Asna) /9, (150
3 12 = (Agizr + Dynot) /3 + (Asiz + Aoy + Azpy) /9,
3 21 = (A + Auzin) /3 + (Asain + Aozoy + Aan) /9,
B§ 2 = Az + Agizy + Agzin + 28003 + 28030 + 2A832) /9.
By (1.3)
WHP= D, WUUBLE+ ), UL
GV ROLS - (1K) G ea
For (i, j,k) € I3, .. we have B6k(,B) S rtke1,0B) and hence ppivi jii k1,01 = u‘luéu’g In the second sum

we insert the expressions in (1.50) for Bf’jk, and collect terms for each A; jke to obtain (1.49). We show this for
three typical cases.

Z ul uiuk ijk(ﬂ) = U WA L1(B)/3 + (UU3U3 + U uus + ufusu3) Ass(8)/9
(GFROLS K
+ (WU + U U3 + utuaus + Ul + 20T Uul) A (B)/9 + -+ -
= U U A 31(B)/3 + WU U123 A 1332(8) /3 + 2u U3 0y 201238003 (B)/3 + -+,
= WU S5, (B) + Ui Us U123 S0y, (B) + Ui U3y 20123 S5, (B) + -+

and (1.49) follows.
[

Remark 3 Since p;jre(1,1,1) = 1 for any ijk¢ it follows that

2. SuB=1

(i.j k,0)el?

Corollary 1 (Domain points for d = 6)

The domain points p:fjk ¢ in barycentric form, defined as the coefficients in the expansion

B= Z PiiceSeB)-

(i.j k,)el?

are given by
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* _ i - 2
pi+l,j+1,k+1,0 - (I’ B k)/6’ (I’ B k) € IBernstein’
and moreover

4 4 3 1.51
Pon = 213/6, by =(L32)/6  piyy = (123)/6, (1>
Py = (11418, pi, =(7.47)/18,  piy, = (47.7)/18,
Pi = LD/A piy = (L20/4  pyy, = (1,1,2)/4,
Py = (14,11,11)/36, p5,,, = (11,14,11)/36, p3,,, = (11,11,14)/36.
Proof By the Marsden-like identity we have
0 S
Bm = Z _ mpiiké’(l, 1, 1) ljkf(lB)’ m=1,2,3,
(i k,0)e T2
and (1.51) follows after a straightforward calculation.
[
The indices i, j, K and i, j, k, € for the domain points are shown in Figure 1.3.
006 1170
105 015 2160 1260
204 114 024 3150 2250 1350
303 213 123 033 4140 3141 2241 1341 1440
3132 2232 1332
402 312 222 132 042 5130 4131 1431 1530
3222 2322
4221 2421
3312
501 41 321 231 141 051 6120 5220 4311 3411 2520 1620
600 510 420 330 240 150 060 7110 6210 5310 4410 3510 2610 1710

Fig. 1.3 Bernstein domain points on the left, Simplex splines domain points on the right.

Next, we define, as usually, the co-norm condition number of the igr bases for ggr (A) by

ch L c
Kd,0o(T) := max I NG m 7!' o ,
c#0 ||C||oo c#0 ||b c”Lm(‘T)

where d = 3r and b7 ¢ := Z(i’j’k’[)ejr C[jk[sfj-kt, € §Z(&). This number turns out to be bounded by a moderate

number independently of the shape of the basis triangle 7.
Proposition 5 (Stability) For any triangle T we have k6,0(7") < 1350.

Proof Since the Siﬁjk o U0,k 0) € I? form a nonnegative partition of unity it follows that for any x € A
B els > el 10l < llello D S 0) = llelle

(i.j.k,0)el? (i.j.k,6)el?

with an equality if all the C;jx¢ = 1, so that maxc;&poTc||L00(7—)/||c||00 =1

To bound the second part of ks (7)), we consider a spline S € gé interpolating given data at the 36 domain
points. Using the ordering of domain points pj, and basis functions $, mn = 1,...,36, shown in Figure 1.4 we
obtain a linear system
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33

28

21

32

36

25 10

31

24
35

30

17

29

1 2 3 4 5 6 7

Fig. 1.4 The position, left, and ordering of the domainpoints and corresponding basis functions in Figure 1.3, right.

Sy - S ][ e s(p})
e | .

*

. . . = . =8
$(p§6) o %6(11;6) €36 S(I’zs)

for the coeffcients ¢ := [Cy,. .., C]” of S:= 226:1 ¢,S. Here $’ e, @1 are Bernstein polynomials, and S(p?,) =

Oform=1,...,18and n=19,...,36, by continuity properties of simplex splines. Thus A has the lower triangular

1A 0
block form A = A, As

], where A,,,€ R'®18 for m = 1,2,3. Using symbolic computation it follows that

B, 0

-1 -1
Bz 33], and Bl = Al 5 B3 = A3 .

A1 and A, are nonsingular. Thus A is nonsingular with inverse A7l = [
B, = -B3A,B,. We compute

12209201 545461 1

-1 _ I
147 = —5 507604800~ < 130~ 5

and the proposition follows.
|

Finally, we consider next the problem of obtaining C2—continuity across an edge between two adjacent triangles
in a global triangulation, making use of the local properties of our simplex spline basis.
We begin with a technical observation.

Lemmad4 On 73i.e forO0 <3< B1 <1land0< Bz <Br <1
s

et et sat0 = Bl {01, K) i+ j+k=6,i = 40r] >4},

Shiil = By — B3, — By, + OB3),

Shiil7 = BS;, = By, — By, + O(B3), (1.52)
Stoil7 = 2B3j, + O(B3), Sypalss = 3By, + O(B3), Sy 75 = 2B, + O(B3)

Sl = 68,5 + O(B3) Sypyl75 = 6B + O(B3).
while Sl.éjk(,|(,§ = O(Bg)for the remaining splines.

Proof The set Sﬁr] A1 with {(i,j,k) : i1+ ] +k =6,i > 4orj > 4} are 2 x 6 = 12 classical Bernstein
polynomials on the triangle 77, located on the lower left and right corners in Figure 1.3. Using the explicit forms
(1.46) and (1.47), (1.52) follows by inspection.

]

For

S= Z Cijkt’gl}k[

(i.j k,)el?

let
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T _ 17
¢o = [C7110, Cs210, C5310, C4410, C3510, C2610, C1710]° € R’
T _ 6
¢1 = [Cs120, C5220, C4311, C3411, C2520, Ci620]” € R”, (1.53)
T _ s
¢2 = [C5130, C4221, C3312, 2421, C1530]° € R,

be the coefficients involved in obtaining C? continuity across an edge between two triangles, see Figure 1.3.

Proposition 6 Let
S= Z CjkeSye  or 8= Z Cijie S

(i,j.k,b)el? (i.j.k,b)el?

respectively, be defined on the triangle T := (p,,p,.p3) (resp. T = (p1,p2P3)). We suppose that p, =
SsonT

Apy+ Aapy + B3py with A1 + Ax + A3 = 1. The function S, = {§ onF is C" withr < 2 if and only if

Co Coo ... Corl| |co
= (1.54)

where the €,€1,¢2 are the coefficients of S corresponding to (1.53), and the matrices C ,,, are defined by

Co=IcR™, Cp=0eR™, Cp=0ecR™, (1.55)

A 0 ...0

Cp= eR™, €y =31 eR™C, Cp =0 RS, (1.56)

04 A

: el el e 0
0...0 A4 A,
(22 2452, 2 0 0 0 0
0 /2 21(1/2+2)  A(l+A)/2 0 0 0
Cz() =10 0 /l](l +}.1)/3 (/l] +/12 +2/11}.2)/3 12(1 +/12)/3 0 0
0 0 0 AL+4)/2 1/2+4) A2)2
0 0 0 0 P 24, 43

24143 22,3 0 0 0 0 (1.57)
0 Az 13(1/2-23/2+ ) 0 0 0

0 0 A3(1-23+22))/3 A3(1-23+22,)/3 0 0 | eR>S,

0 0 0 A3(1/2-23/2+ A1) A3 0

L 0 0 0 0 2013 223

Con =/1§I e RS,

c R5X7,

(]

Cy =

Proof Webegin by the C"—continuity for the Bézier surfaces using the Bernstein basis. Let o~ = 3., ., 4x—¢ Yvux BE#K €
Ps be defined on the triangle 7~ := (p;., p,. p3) (respectively & = 3,106 Frux By € Po on T := (py, ps. B3))
where BE” . are the Bernstein polynomials with barycentric variables £, 52, 33.

We recall, see [17, Theorem 2.28], that the function oy = { g 22 ; is C" if and only if
['}7m]m:0 ..... r = [rmn]m,n:O ..... r[yn]n:O ..... rs (158)

where
Y0 = [¥600 Y510, Y420, Y330, Y240, Y150 Y160] " »

V1= [)’501,7’411,)’321,)’231,7141,7051]T,

Y2 = [7402,7312,7222,7132,7042]T

similarly for the ¥,, and the matrices are defined by

Foo=1€R™, Ty =0eR™, Ip=0eR™, (1.59)
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A1 A 0 ...0

T = U eR®™, TIyy=aI eR™, T, =0eR™, (1.60)
oL L .0
0...0 44 A
(3202, 43 0 ... 0
2 2 :
Iy = 0 2 201 A ¢ RS,
0 ... 0 222411
(1.61)
22143 22,23 0 ce. 0
I = 0 2443 2045 €R¥S, Ty = LI e RS,
0 ... 0 20343201

See also Figure 1.3.

Consider now the function S,

{ z gﬁ ; on 7~ U 7. To study the C"—continuity through the edge (p,p,), it

is sufficient to consider Son 73 and §on 73. On 73 (resp. 73), any Sg.k[ of the basis (resp. §l.6jkl,) is a polynomial of

_ ijkl 56 & _ ijkt 36
degree at most 6, Sfjké, = Dytp+=6 Wy By (1esp. Sfjk[ = Dytp+k=6 Wk Byyi)- So that sl and §|4 can also
be written in the Bernstein bases

= _ 6 . _ ijkt
Sl7s = Z Cijkf%k['ﬁ = Z Yvuk Bv;u< with ¥, = Z Cijkt Wy
(i,j,k,0)el? VHU+K=6 (i,7,k,6)el?
= S = s Bob S & _ ~ijkt
s|’73 - Z Cifkf%kflﬁ = Z Vvuk BV#K with ¥y, = Z Cijkt Wy -
(i,j.k,0)el? VHU+K=6 (i,j.k,)el?

From (1.52), we deduce the components Wf,],fkf for « = 0,1,2 and we put forward the corresponding components
_ B6 86 Bf) B6 86 86 86
Sli; = C7110Bgyg + C6210Bs 1 + C5310By0 + Ca410B330 + C3510By,40 + C2610By’s + C1710Byg
6 6 6 6 6 6
+C120Bsy; + Cs5220B,; + C4311 B3y, + Ca411By5; + C2s520B),4; + C1620Bps,
6 6 6
+C5130Bg, + (2C4221 — C4311)B3), + (3C3312 — C4311 — C3411) B3y,
6 6
+(2C421 — C3411)By5, + C1530Bgy,
3
+0O(83)

and a similar expression for §|

The conditions for the regularity C° of s,, (1.55), is a consequence of (1.59) and similarly for C' with also
(1.56) coming from (1.60). To obtain C2, we add the conditions (1.61). They can be rewritten

G130 = Cr11047 + 2Ce2104142 + Cs31043 + 2C52004243 + Cs13043 + 2Cs12041 43,
264201 = Ca311 = Ce21047 + 2Cs31041 42 + Caa1043 + 2C4311 243
+(2C421 — C1311)43 + 2C52201 43,
3C3312 — Cazt1 — Caar1 = Cs31047 + 2Caa1041 A2 + Cas1043 + 2C3a11 A2 A3
+(3C3312 — Ca311 — C3411)43 + 2C4311 4143
Ca41047 + 2C351041 A2 + Cog1043 + 2Co520 243
+(2C421 = C3411)43 + 2C3411 1 A3,

2Cu401 — G411

2 2 2
Ci530 = C35104] + 2C261041 42 + C171045 + Ci6204243 + Ci53043 + 2Ca52041 3. o

We already have C4311 and Cs411 in (1.56) so that we deduce that the last components have to satisfy (1.57).
[

Several examples have been considered for scattered data on the CT-split, see for example [11,21]. Here, we
consider a surface on two triangles, see Figure 1.5. With the 18 conditions from Proposition 6, we obtain a C?
surface on the two triangles.
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Fig. 1.5 A C? surface on two triangles

1.4.2 The C* elements, X3 = X7

In this section we repeat the process of the preceding one for r = 3. The methods are the same, but the expression
become more lengthy. For that reason, we essentially list the results.
The partition of unity basis Zg is constructed from the 75 elements A, jkee defined in Example 3 as follows,

1if £=0,
ke = CijkeDijkes  Cijke =3 1/3 if (€ > 0and min(, j,k) = 1) or € = 4, {i,j.k ¢} e I°. (1.62)
2/3 if 0 < ¢ < 4 and min(i, j,K) > 1,

Theorem 3 (Barycentric Marsden-like identity for d = 9)
Foru = [u;, Uy, 3]T € R3, 8 := [B1, 82,837 €R3, withB; > 0,i =1,2,3 and B + B> + B3 = 1 we have

@B’ = > kS B), (1.63)
(irj k,6)el?
where
k _
ull U£U3, (I J k) € Bermtem’& =0,
Pirt j+1kee(w) = SUTWBUSES o, =4, (1.64)
ullmx("l) ;ndx(”l)u?ax(k’l) /J,'jkgl_lfgzl, otherwise .
Here U1p3 := (Uy + Uy + U3)/3, and
L if 1,2 is not among (i,j,k),
HUkE =N, 4 ug)/2  if 1,2 is at position T, s in (i, ], K).

Proof As for r = 2 the barycentric Marsden-like identity follows from the barycentric form (1.3) of the Marsden
identity for Bernstein polynomials by expressing the 19 removed Bernstein polynomials B?jk in terms of the

elements in 23 For (i, j, k) € I removed

1 35 = = (Ao + Dose1) /3 + (Aiasa + Dozsn) 19 + (Araaz + Aoyzaz + Dousz) /27
1 53 = = (Aroar + Dog31) /3 + (Aisaz + Dos3) 19 + (Araas + Dossz + Aosaz) /27
5 13 = = (Ag1a1 + De231) /3 + (Asiaz + As5232) /9 + (Aaraz + Azs + Asnaz) /27
= (Aeur1 + De321) /3 + (Asarz + As322) /9 + (Auars + Auzoz + Asans) /27
3 5.1 = (Auor1 + Disea1) /3 + (Ausiz + Dissn) /9 + (Aaars + Auzoz + Asans) /27 (1.65)
)/9+(

3 15 = (Aaier + Daze1) /3 + (Adisy + Dansz) /9 + (Auras + Anss + ADianaz) /27

531

1,4,4 = Aiss1/3 + (Ausy + Asan + Dozsy + Loszn) 19 + 2(Aozas + Aoszs + 20 1443) /27
52,1,4 = WNs151/3 + (Aaisr + Dsian + Dgpsr + Ds230) /9 + 2(Dsoas + Aapsz + 204143) /27
52,4,1 = Ass11/3 + (Ausin + Asarn + Agson + As300) /9 + 2(Asans + Auzoz + 2A4413) /27
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53,2,5 = (Anse1 + Dane1) /3 + (Assz + Asos2) /9

+ (Aozaz + Ds32az) 27 + (Aozsa + Aspza + Aszng) /81
53,5’2 = (Aoes1 + Asen1) /3 + (Aaszo + Agsn) /9

+ (Aoazs + A3an3) 127 + (Aossa + Aszos + Aspsa) /81
B?,z,z = (Aez1 + De321) /3 + (Asaza + Asznn) /9

+ (Auazs + Auzns) 127 + (Asnza + Agzna + Lozza) /81 (1.66)
B§,3,4 = (Apsy + 280350 + Aspsy + Aouzz) /9
+ (2A 1443 + 480343 + 285043 + Azans + Aozag + Aspsa + As304) 27
B 43 = (Aisaz + 280530 + Assyy + Doz /9
+2A 1443 + 480433 + 28403 + Asoas + Aozza + Asozg + Aszna) /27
B 25 = (Asia + 28503 + Aszny + Aapz) 19
+ (2A4143 + 4Au33 + 2503 + Dozaz + Aozas + Agozg + LNszng) /27
52,3,2 = (Asgrn + 205300 + Aspzr + Asuns) /9
+ (2A4413 + 40303 + 24033 + Dosszz + Aozzg + Aspsy + A3324)/27
B 4o = (Ausiz + 28550 + Aossy + Dyszps) /9 o

+ (28413 + 4Dzu05 + 280433 + Agpsz + Aoszzg + Agpss + As304) /27
B, = (Auisy + 28555 + Apasy + Dyos3) /9
+ (2A4143 + 4Q5043 + 280343 + Auzos + Aozzs + Agpzs + Nszng) /27
52,3,3 = (Agasz + Aouss + Agpaz + Asans + Aoz + Ayzs) /9
+ (Ayaaz + Agras + Agars + 280334 + 285034 + 2A5304) /27
By (1.3)
(UiB1 + W + Uss)” = Z VATV B (B) + Z VAVAT B (B)-
(i,j,k)el? (i.j.k)er?

Bernstein moved

For (i,j,k) € 7; . wehave B?’j,k(ﬂ) = Si)+1,j+1,k+1,0(ﬂ) and hence p
we insert the expressions in (1.65)—(1.67) for B?j «» and collect terms for each A jk¢ to obtain (1.63). We show this

for 7 typical cases. Let U, s := (U, + Uy)/2 forr,s=1,2,3. Then

— U WUk
o(u) = WU UL In the second sum

i+l j+1,k+1

i J o kRY 1,44 3,,0,,5 2,25
Z W w3 B (B) = Uil U3 Assi (B)/3 + (Uiup 3 + uiusu3) Asoei (B)/3
(i.j.k)er?

emoved

+ (Wuul + utusul + utudud) Asaa(B)/9

+ (UWUu) + ujusul + uTu U3 + utusus + 203 usu3) Asssa(8)/9

+ (Wusul + uwlusul + 2ufusul + 2ufuiud + uuud + uiuiud) Ausis(8)/27

+ (Ujupu + uusu3 + 2ufubul + Uiudus + 4ujusul

+2ulWU3 + WUsU3 + 3uTu3ud + 3Uuiul) Auss (B)/27

+ (UTU3U] + UTUSUS + U UL + 3UTU3U; + 3UTUss + 3ujusu)

+3ulWu + 3uTusu3 + 3uTusUg + 6T Us U3 ) Assna(B)/81 + - -

= U U U A 551 (B)/3 + +2uf Uy U301 2 As261 (B)/3 + U U UL U123 As412(B) /3 + 2T U3 UL Oy 30123 A3522(8) /3
+ U U3 O7,5 A 413(8) /3 + 20U Uy U3 U 30,3 Aa33(B)/3 + UTUSUS 033 Assna(B) /3 + -
= UjU3U3 S5, (B) + WU 1301 S, (B) + LU U U123 8,5 (B) + UTUS U3 Ui 30123 S5, (B)

33 12 301,00 2 2003
+ U1U2U3U12353413(:B) + U1U2U3U2,3U12352233(ﬂ) + Uy U553 S50 (B) + -+

and (1.63) follows.
[
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The barycentric form of the domain points are computed as explained in Corollary 1. For a plot see Figure 1.6.

For the stability, the computation is similar to the proof of Proposition 5, except that since §32 4 QB 4 $33 "
have the same domain points (1/3,1/3,1/3). We replace this triple point by the three points (3,3,1)/7, (3,1,3)/7,
(1,3,3)/7 and find

b'c o
o) 1= max 12T el 594434
c#0 el 20 |IB" el (7
11100
2190 1290

3180 2280 1380
4170 3270 2370 1470

5160 4163261 2361461 1560
415152 23524
6150 5151
5142050n gy 1542
4233 , 2433
7140 6141545253 « 2433 9641 1740
6231 s 2591
8130 7230 3552 spy 2730 1830

4413
63215412 45123621
9120 8220 7320 6411 5511 4611 3720 2820 1920

52
1551 1650
43

H
w

10110 9210 8310 7410 6510 5610 4710 3810 2910 11010

Fig. 1.6 Simplex splines domain points on the right, with their positions on the left. 55)324’ S;)23 40 5333 4 have the same domain point
(1/3,1/3,1/3) as indicated by a *
19
11100
20 18
2190 1290
21 40 17
3180 2280 1380
22 41 39 16
4170 3270 2370 1470
23 42 54 53 38 15
5160 4163261 2361461 1560
55 64 63 52
4152252 235P452 24 43 37 14
6150 5151 1551 1650 65 71 70 62
51442»14&43 234‘844?542 5 4, s 51
7140 6141555200 « 2433 "1641 1740 ®M e . o1 ¥
5232 2532 o7 0
6231 4373423 2631 67 68
26 45 35 12
8130 7230 53224123522 2730 1830 58 ., 60
63215413 25173621 © oa w @
9120 8220 7320 6411 5511 4611 3720 2820 1920 27 28 29 30 31 32 33 34 "
10110 9210 8310 7410 6510 5610 4710 3810 2910 110101 2 3 4 5 6 7 8 9 10

S9

. . . . . . . . 9 9
Fig. 1.7 Simplex splines domain points on the left, with their sorting on the left. S S 2334

304> O3034> indicated by a * have the numbers
73,74,75

C3-continuity through an edge:
Let S = X i k.0)ei Cijkfsl)jkg (respectively § = ;i ¢ r)e 73 C[jk(S?jk[ ) be defined on the triangle 7 :=

(P1, P2 P3) (tesp. T := (p|, P2 P3)). We suppose that 5 = A1p; + Aap, + A3ps with A; + Ay + A3 = 1.
With an extension of the notations of Proposition 6, we define
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Clo-i,i+1.1.0]j=0... or

T

= [C9120, C8220, C7320, Cs411, C5511, Ca611, C3720, C2820, C1920]

T
[C8130, C7230, C6321, C7412, C4512, C3621, C2730, C1830] "

T
C7140, C6231, C5322, C4413, Ca3522, C2631, C1740] " -
Forr < 3, we connect with smoothness C” two adjacent triangles in the following proposition.

Proposition 7 Let s = Z(i,j,k,f)eﬁ Cifkl’s?,kf (respectively § = Z(i,j,k,t’)efz CijkgS?]ké, ) be defined on the triangle

T :={p1,Pa P3) (resp. T .= (D1, P2 P3)). We suppose that p3 = Lip| + Lap, + laps with A1 + Ao + A3 = 1.

The function S; = 2 ZZ ; is C" withr < 3 if and only if
[Em]m:O,...,r = [Cmn]m,n:O,...,r[cn]n:O,...,m Cmn =€ R(lO—m)x(lO—n) (168)

where the nonzero submatrices or components are written below in (1.69) (1.70), (1.71) and (1.72).

The proof of the proposition is a reproduction of the one of Proposition 6, firstly by connecting two polynomials
written in the two corresponding Bernstein basis, then computing the Bernstein polynomials in the Simplex-Splines
basis.

Coo =1 e RO, (1.69)

AL A 0 ... 0

04 A

Cy= eR™0 €y = AT e R, (1.70)
U
0...0 44 A
Cy(1,1:3) = /li 20,2, 2
Cx(2,2:4) = 2 20,2, A2
A a4 A
C%(3,3:5) = N+ 2+
2 5 3
C(4,4:6) =§+?12A§22+%+’13‘§+%
Cy(5,5:7) =3 +4 b b 4 2D, d
22 20
C(6,6:8) = +4 Q[+ 2 3
Cy(7,7:9) = /li 24, /lé
Cx(8,8:10) = A7 24, A3
(1.71)
C21(1, 1: 2) = 2/11/13 2/[2/13
C21(2, 2: 3) = 2/1]/13 2/12}.3
C>(3,3:4) = 3 2/12/12;/15+ 5
Co(4,4:5) = 20, 43-23 LA 2,43-25 LA , s
1) . — X
Cn(5.5:6) 2/11/33_/[§+;3 2/12/133_/@ /133, C22—/l3l e R®*°,
2109, 9- ) = 3 3 3 3
22, A3-42
Cr(6,6:7) = 25 4+ 4 3
C21(7,7 . 8) = 2/l]/13 2/12/13
C2](8, 8: 9) = 2/11/13 2/12/13
Cx(l,1:4) = /li 354, 345 P
2 2 2 3 2
C0(2,2:5) = 4 S L L L2+
C3(3,3:6) = %7+%% @+’“’lz+’l‘+’11 ’l';%+%%+2/1§—’12+%+% ’1—§+%%+%
B 222 22, 242 2 222 A 222
Cx(4,4:7) = Els+ /192‘ + 4 /‘132“ + AL Dy 92 + 2 %,z Asz :24"% +He A2 ;Tz;zr L (1.72)
Cu(5.5:8) = Fag+q Gretibafaqeq  AR.Fadaeg a3
8o 3/1 3 A3 A3
C3(6,6:9) = F+5 2+ 1A =2+ 32 2
C3(7,7:10) = 3 3/12/12 343 I
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C3](1, 1: 2) = 3/li/l3 6/1]/12/13
C3(1,3) 3/1%/13
3%
C3|(2,21 3) = % 343 + L1 A3
BB31,8243820  20,43-22
C3I(2,4) = 2 23 2 Pl 3
REP P 23-32,2-32, 2462, 0,23 20,23-22 22, 23-42 Q
C3|(373:4)= I% + 133 3 3 5 3 5 3 3 3+?3
A-30,22+32%2 20, 3-22
C3(3,5 = =/ .
3 2 2 2 3 2 2 2 2
Cy(4,4:5) = ,1373,1,,;3%/11,13 + 2(2/11/913—/13) . % 2,1373,12,1373;1],13%,1,,1213 + 2(2/12/913—,13) + 2(2/11;3-/13) + %
A3-30,22+3222 2(22,23-22
Cay(4,6) = HDBLOLL  200LN) | L
AB-3,22+432822 20, 323 23-32,2%2-32, 3462, 124 2,3-22 22, 3-22
C31(5,5:6): 3 163 143 133 3+% 3 23613 123+ 233 3 163 3+%
B 2
C3u (5,7 = S+ 52
B33 22432820 0 22,43-42
C3(6,6:7) = 3 2* L 5 3
_ 32223
C;(6,8) = 3025 + A3 h
C3(7,7:8) = 3/1?3 611,03
C5(7,9) 3543
C32(1, 1: 2) = 3/11/1% 3/12/1%
30,42 61,2223
C3(2,2:3) = e S 2
64,2213 A2 9142643 5
C(3,3:4)= 22+ 3 2042
93623 222 91,2364 212 _ 3 77
Cn»(4,4:5) = ++T3 %+T‘ Cyi =41 €R
92, 22623 6, 22-2283 A2
C3(5,5:6)= ——2+23 243
64,2223 5 3,22
Cn(6,6:7) = —5— + 13 ==
Cn(7,7:8) = 34,43 343

1.4.3 Conclusion

For any r > 1, we have built a B-spline like basis made out of simplex splines for the space Sgr(A) of splines

on the Clough-Tocher split A on a single triangle. For even values of I, we removed one of the elements in order
to obtain the partition of unity and a Marsden-like identity proved for r < 3 and shown symbolically for r < 6.
Looking in more detail at the cases r = 2,3, corresponding to degrees d = 6,9, we gave explicit formulas for
connecting two neighbooring triangles in a C" fashion across an edge using Bernstein-Bézier techniques, and gave
an upper bound for the L., condition number of the basis.

Forr = 4,5,6 the domain points can be computed as for r < 3 using the Marsden like-identity shown below,
which gives interpolation points to study the stability . The coefficients to obtain the C"—connection between two
triangles 7 := (py,p,.p3) and 7 := (p,,p,. p3) can be found by a computation in the Bernstein basis of the
polynomials in (py, ps, py) and (p, p2. Pr)-

We end by restating the Marsden-like identity in a general form. It is proved for r = 1,2, 3 and symbolically for
r =4,5,6. It is a conjecture for r > 6.

Theorem 4 (The barycentric Marsden-like identity for degree 3r,r < 6.)
Forr e N,d=3r,u;,8; e R, with3; 20,1 =1,2,3, and B + B2 + B3 = 1 we have

2

(i.j.k,0)elr

(WB1 + Wfs + U3 83) ¢ =

Pijke(Ur, Uy, Us)sfljkg(ﬂl,ﬁz,&),

where the index set I" is given in Definition 3 and

I, ift=o0,
33;;(5 = CijieDijre, where Cijke := {2/3  if max(er, &, 6) = 1/2,

[4

1/3  otherwise, (1.73)

SR S S 1-6
Pijie(Ur, Uz, U3) i= U W) U3~ O3 (€1Ur + €Uy + €3Us + Gor)' 0.

Here, A := max(¢,1), U3 := (U + Uy +U3)/3, v :=max(i,],K), and
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{1/71, i<v&jEl&K#]L, {2, i 1& ] #K
€ = > V1=

0, otherwise 1, otherwise,
1y, j<v&i#l&k=#l1, 2, j#1&I#K,
€ = . . Y2 = . (1.74)
0, otherwise 1, otherwise,
1/y3, k<v&i#1&j#1, 2, k#xl1&i#]j,
€ = , =
’ 0, otherwise ”3 1, otherwise .

Proof Forr = 1,2,3 this is an alternative way of formulating Theorem 5 in [19] for r = 1, and Theorems 2,3. To
see this consider first r = 1. In [19] it was shown that

B u)’ =S (B) + UTLS(B) + LS (B) + BSI(B) + LU SS(B)
+ LW S(B) + BS(B) + UIUIS(B) + U3 S(B) (1.75)
+ Ui U3 (So(B) + Si(B) + Si2(B)),

where B := (B1,82,83) and u := (Uj,Up,U3). For the first 9 (Bernstein) dual functions we find ¢, = € =
es = 0, 6o = 1, and (1.73) holds. For the dual function p[1221] corresponding to S = A1 /3 we find
(U + Uy + e3U3 + 50()1760[ = U; and (1.73) gives p1221(u)S?221(ﬂ) = UUpusSo(B) as stated in (1.75). The
results for p[2121] and p[2211] are similar. For r = 2,3 it follows as for r = 1 that (1.73) holds for the Bernstein
polynomials in IBzemstein. For r = 2 consider for example pj32,(u) = u1u§u3l]1,30123 and Sz = 2&2332 /3 in
Theorem 2. This is the same as the expressions in (1.73) since €, = €3 = 1/2 and &3 = 0. As an example for
i3, and Sy304 = Asaoa /3 in Theorem 3 is the same as the expressions in (1.73) since

r =3, p3oa(u) = WUWUIO ),
€1 = & = 0and e3 = 1. All other cases are verified similarly.
[
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1.5 Appendix

We provide the reader with free extra entertainment by giving alternative proofs, not facts, for some properties of
our spline basis.

1.5.1 Generating system for the spline space

To show that X% = generates the space of all simplex splines in, 5%, (A), we begin with a definition and a lemma.

Definition 5 We introduce, for m > 0 and u < d + 1 the spaces

M,
Wy,

span {A[i, j, k; €] € SH(A) : € > m max{i,j,k} = u— ¢},
span {A[i,j,k;f] € S(A) : > m min{i,j,k} = 1}.

Note that by definition M,,, 2 M,,+; and W,,, 2 W,,,1 for any m € Ny.

Lemma 5 Let £ € Ny and i, j,K € Nwithi + ] + k+ ¢ =d + 3. If max{i, j,k} < u— € and min{i, j,k} > 1 then
A[I’J’k7£)] € Merl +W€+|-

Proof We prove the lemma by induction on the defect v = u — € — max{i, j,k} which starts at v = 1 since
max{i, j,k} < u-=¢.
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If v = 1, suppose without loss of generality that max{i, j,K} = i, otherwise one can permute the knots
appropriately. The knot insertion formula (1.18) yields that

Alij,k: €] =%(A[i Lk e+ 1]+ Al —1,k;£’+1]+A[i,j,k—1;€+1]), (1.76)
and the two functions A[i, j — 1,k; £ + 1] and A[i, j,k — 1; € + 1] satisfy

mox {1 U ==y mueen

hence belong to X% , thus to Mg, ;. The same holds true for Ali - 1,j,k; £+ 1]if j =i or k = i. In the remaining
case, i > max{]j, k}, we decompose

A[i—l,j,k;£’+1]:%(A[i—z,j,k;€+2]+A[i—l,j —1,k;f+2]+A[i—1,j,k—1;f+2])

and note that the last two functions on the right hand side again belong to X} , thus to M¢,2 C Mgy, so that again
one only has to look at the first term. This procedure is repeated n := i — max{j, K} times when i — n = max{j, k}
and thus A[i — n, j,K; € +n] € Mgy, © Mgy,

To advance the induction, suppose that the result has been verified for some defect v > 1 and again apply the
decomposition (1.76) to a spline in X _of defect v+ 1. Suppose again without loss of generality thati = max{i, j, k}.
We begin by looking at the first element of the decomposition where three things can happen:

1. i =2, then immediately Ali = 1,j,k; €+ 1] € Wpyq,

2. the defect is v if i = j ori = k, and the hypothesis yields that A[i — 1,j,Kk; £ + 1] € Mgyq + W1,

3. still we have v+1 which happens ifi > max{]j, k}.In this case, we repeat the above argument of n := i —max{j, K}
iterated decompositions until, eventually, A[i — n, j,k; € + n] € Mgy, + Wepn € Megq + Wy 1. O

For the two other elements of the decomposition, the defect of A[i, ] — 1,k; £ + 1] and A[i, j,k — 1;£ + 1] is
u—C+1)—max{i,j - L,j,k=1Lk}=pu—-(€+1)—i=(u-¢-max{i,j,k}) - 1l=v+1-1=v
and the induction hypothesis yields that

Ali,j - 1Lk £ +1]

Al K= 1:6+ 1]} € Mpyo +Wepo € Mpyy + Wy

This advances the induction hypothesis and completes the proof of the lemma.
]

Proposition 8 X generates the space of all simplex splines in S,

Proof First recall that, by assumption, g = 3r + 1 —r = 2r + 1 and let Ai, j, k; €] be one of the simplex spline
generating Sgr(A), which implies that
1. min{i,j,k,¢} >0andi+j+K+¢=23r+3,
2. ¢ > 0 implies max{i, j,k} < u— ¢ =2r + 1 — £ for C"—smoothness,
3. if min{i, j, K} = 0, then ¢ > 0 since the Bernstein polynomials with zero multiplicity correspond to distributions
defined only on the boundary of the simplex.

We distinguish three cases:
1. max{i,j,k} > u—¢, then £ = 0 and A[i, j,K; €] is already an element of Type (2),
2. max{i, J,k} = u— £ then
a. ifi := min{i, j,k} = 0and j := max{i,j,k} = u—€=2r +1—¢. Sincei + j + K+ ¢ = 3r + 3, we deduce
that K = 2 +r > 2. By knot insertion,

AJ0,j,k; ] = % (A[l,j Lkl + AL k=16 + AL ], k: € — 1]).
The first element in this expression, A[1, j — 1, k; €] is of Type (3) if k < j and of Type (1)if k = j, the second

one, A1, ],k — 1;¢] is always of Type (1) and the third one, A[1, j, k; £ — 1], of Type (3). Consequently,
AJ0,j,k; €] € span(X% ).
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b. if min{i, j,k} > 1, then A[i, j, k; ] is already an element of Type (1), hence in .
3. max{i,j,k} <u-¢

a. if i := min{i, j,k} = 0, assume that | := max{i,j,k}. Since i + | + K+ ¢ = 3r + 3, we deduce that
j = k> 2+r > 2 and knot insertion yields

AJ0,j,k; €] = % (A[l,j Lk )+ A[Lj,k=1;0] + Al j,k; € - 1])

where the three elements on the right hand side are all of Type (3), hence A[0, j, k; ] € span(X% ).
b. if min{i, j,k} = 1, then A[i, j, k; £] is immediately an element of Type (3).
c. if min{i, j,k} > 1 we refer to Lemma 5 and find that A[i, j, k; €] € Mg + Wes1 € Mg + Wo.

To finish the proof and to complete the last of these cases, we have to show that My + Wy C span(Z%,). In fact,
Mo C span(Xj ) was exactly proved in case 2. To complete the proof, let Ali, j,k; £] be a generator of Wp. If
max{i, j,Kk} > u— ¢ then once more £ = 0 and A[i, j, k; £] = Al[i, j, k; 0] is an element of Type (2). If, on the other
hand, max{i, j, k} = u— ¢, then A[i, j, k; €] is an element of Type (1), and if max{i, j,k} < u—¢, then Ali, j, k; €]
is an element of Type (3). Consequently, A[i, j,k; ¢] € 3! and thus Wy C span(X} ) which completes the proof
that

Mo +Wp C span(Z},) 1.77)

and the proof of the theorem.
]

1.5.2 A special case of linear independence

Here we give a direct proof of the fact stated in Proposition 4 that the functions in ig are linearly independent on

A.

Proof Suppose for some real numbers {C;} that ?21 Cij?(x) = 0 for all x € A. We first show that ¢; = 0 for
j = 1,...,18. These corresponds to Bernstein polynomials with domainpoints on the boundary of AA. Consider the
edge (p, p,) corresponding to B3 = 0. Looking at Figures 1.3, 1.4 we see thati + ] < 7 for %, cees @6. By the local
smoothness property only 516,. . .,$ can be nonzero on this edge. Moreover, on the same edge, these functions
reduce to linearly independent univariate Bernstein polynomials Bl.6]. fori+j = 6.Itfollows thatc; =--- = ¢; = 0.
With similar arguments on the edges (p,, p;) and (ps, p;) we conclude that c;=0forj <18.

The remaining simplex splines Sf j =19,...,36 are located on 3 rings. On ring k we find Sj6 forj =19,...,27
fork =1, =28,...,33 for kK = 2, and ] = 34,35,36 for k = 3, see Figure 1.4. On the horizontal part of these
rings we take partial derivatives of order k with respect to 83 and evaluate at B3 = 0. On the parts parallel to
(P12, P3) We take partial derivatives of order k with respect to 8 and evaluate at 8; = 0. Similarly we use 3, on
the last parts. The details are as follows

The horizontal part of the first inner ring contains the functions ﬁ’g, @2, $3, @0 corresponding to %.k ¢, With

i +j =7 By (147 sj‘@|7g =O(B3) for j = 19,...,36, j #19,20,22,23 and

Sl = 30818283, S,l7s = 6086583 + O(B3)  Sl7 = 60875383 + O(B3),  Syplas = 30815555.
With x = (81, 82,0) we then find

36

g 0
0= 55 | 2,5 |0) = 55 (croShy + 0y + 0285 + ey ()

=19
_ 4 3. 2 23 4
= 30C198/ B2 + 60C 5,55 + 60C23 515, + 30C200615;,

a linear combination of linearly independent univariate Bernstein polynomials of degree 5. It follows that Cjg =
C2 = C3 = Cyo = 0. With a similar argument with $4, @5, %1 on 77 and $6, @7 on 7, we conclude that ¢; = 0 for
j <27.
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Moving to the next ring we consider %8, $9, %0 on the horizontal part and obtain from (1.46) and (1.47) with
X = (:817ﬂ250)

82 36
0= 6_,8§ j;; ¢S |(x) = 6/32 (028538 +C Sy + C305§o) (x)

= 120 = 4Cos 8 B2 + 270 * 4Cao 31 B3 + 120 * 4C3081 53,

a linear combination of linearly independent univariate Bernstein polynomials of degree 4. It follows that C;g =
C9 = C3p = 0. Moving around this ring we conclude that ¢; = 0, ] < 33. Finally, by taking third derivatives with
respect to 33 we obtain by (1.46)

36
0= 6—33 Z 56 (x)= FY (0345‘§4 + C%5$5) (x) =360 =6 (,3 Ba2Cs4 +,31ﬂ2035)

9p3 \ /= B3

This implies that C34 = C35 = 0 and then C3¢ = 0 since by (1.46) $6|75 is nonzero.
|
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