
Charles Hermite
1822 – 1901

- T. Lyche, JLM, T. Sauer, Simplex–Splines on the Clough–Tocher Split with Arbitrary Smoothness, to appear in Springer INdAM,
- JLM, T. Sauer, Extra Regularity of Hermite Subdivision Schemes, (2021 in DRNA)
- M. Charina, C. Conti, T. Mejstrik, JLM, Joint Spectral Radius and Ternary Hermite Subdivision, (2021 in ACOM)
- JLM, T. Sauer, Generalized Taylor operators and polynomial chains for Hermite subdivision schemes, (2019 in Num. Math.)
- T. Lyche, JLM, Simplex-Splines on the Clough–Tocher Element, (2018 in CAGD)
- JLM, T. Sauer, Extended Hermite Subdivision Scheme, (2017 in J. Comp. & App. Math.)
- C. Conti, JLM, L. Romani, Dual Hermite Subdivision Schemes of de Rham-type, (2014 in BIT Numer Math),
- T. Lyche, JLM, Exercises in Computational Mathematics with MATLAB, Springer, 2014
- JLM, P. Sablonnière, Rational Splines for Hermite Interpolation with Shape Constraints (2013 in CAGD)
- JLM, T. Sauer, A Generalized Taylor Factorization for Hermite Subdivision Schemes (2011 in J. of Comp. & App. Math.)
- JLM, T. Sauer, From Hermite to Stationary Subdivision Schemes in One and Several Variables (2012 in Adv. Comput. Math.)
- S. Dubuc, JLM, de Rham Transform of a Hermite Subdivision Scheme (2008 in Approx. Th. XII, M. Neamtu and L.L. Schumaker eds, Nashboro Press, Nashville.)
- S. Dubuc, JLM, Hermite Subdivision Schemes and Taylor Polynomials (2009 in Const. Approx.)
- JLM, Exercices et problèmes d’Analyse numérique avec Matlab, Dunod, 2007
- T. Lyche, JLM, Hermite subdivision with shape constains on a rectangular mesh (2006 in BIT Num. Math.)
- T. Lyche, JLM, C1 Interpolatory Subdivision with shape Constrains for Curves (2006 in Siam J. Numer. Anal.)
- S. Dubuc, JLM, Convergent Vector and Hermite Subdivision Schemes (2006 in Const. App)
- S. Dubuc, JLM, Convergence des schémas de subdivision d’Hermite au sens des distributions (2005 in Annales des Sciences Math. du Québec)
- S. Dubuc, B. Han, JLM, Q. Mo, Dyadic C2 Hermite Interpolation on a Square Mesh (2005 in CAGD)
- JLM, P. Sablonnière, Monotone and convex C1 Hermite interpolants generated by a subdivision scheme (2003 in Const. App.)
- S. Dubuc, JLM, A 4-Point Hermite Subdivision Scheme (2001 in Math. Meth.in CAGD: Oslo 2000, T. Lyche& L.L.Shumaker eds)
- S. Dubuc, D. Lemire, JLM, Fourier analysis of 2-points Hermite interpolatory subdivision schemes (2001 in J. Fourier An. & Appl.)
- S. Dubuc, JLM, Dyadic Hermite interpolation on a rectangular mesh (1999 in Adv. Comp. Math.)
- JLM, Interpolants d’Hermite C2 obtenus par subdivision (1999 in M2AN )
- JLM, Prescribing the length of a de Rham curve (1998 in Math. Engng. Ind.)
- S. Dubuc, JLM, P. Sablonnière, The Length of a de Rham Curve (1998 in J. Math An. & Appl.)
- JLM, Dyadic Hermite interpolants on a triangulation (1994 in Num. Algo.)
- JLM, A family of Hermite interpolants by bisection algorithms (1992 in Num. Algo.)
